Town of Nantucket NANTUCKET MEMORIAL AIRPORT

14 Airport Road Nantucket Island, Massachusetts 02554

Thomas M. Rafter, A.A.E., Airport Manager Phone: (508) 325-5300 Fax: (508) 325-5306

Commissioners Daniel W. Drake, Chairman Arthur D. Gasbarro, Vice Chair Andrea N. Planzer Jeannette D. Topham

DRAFT

AIRPORT COMMISSION MEETING

April 10, 2014

The meeting was called to order 5:01 PM by Chairman Daniel W. Drake with the following Commissioners present, Vice Chair Arthur D. Gasbarro, Andrea N. Planzer and Jeanette D. Topham.

Commissioner Neil Planzer participated by phone due to geographical distance.

The meeting took place in the 1st Floor meeting room at the Public Safety Facility, 4 Fairgrounds Rd.

Airport employees present were Thomas M. Rafter, Airport Manager, Ashley Christ, Business Manager, Noah Karberg, Environmental Coordinator and Janine Torres, Office Manager.

Mr. Drake announced the meeting was being recorded.

Mr. Drake asked for any comments on the updated Agenda which removes the update from Town Counsel on the Open Meeting Law and the review of Executive Session topics noting these items would best be discussed when the full Commission is present in person at the meeting. Hearing no objections the updated Agenda was approved.

Ms. Topham made a **Motion** to approve the 3/25/14 Minutes. **Second** by Ms. Planzer and **Passed** by the following roll-call vote:

Mr. Drake – Aye Mr. Gasbarro – Aye Ms. Planzer – Aye Mr. Planzer – Aye Ms. Topham - Aye

Mr. Gasbarro made a **Motion** to ratify the 4/2/14 Warrant. **Second** by Ms. Topham and **Passed** by the following roll-call vote:

Mr. Drake – Aye Mr. Gasbarro – Aye Ms. Planzer – Aye Mr. Planzer – Aye Ms. Topham - Aye Public Comment None.

Pending Leases & Contracts

Mr. Drake recognized Mr. Rod Allred, representing **G. J. Smith, Inc**. for their pending Bunker Lease. Mr. Allred read aloud a statement he delivered to the Commission just prior to the meeting addressing their concerns regarding the pending lease negotiations and the FUDS (Formerly Used Defense Site) status.

Mr. Allred remarked their desire, either privately or in conjunction with the Airport, to remediate any problems related directly to G. J. Smith's parcel noting Weston Solutions, Inc., the same company contracted by the Airport as the Licensed Site Professional (LSP) to perform soil testing related to the FUDS issue, has indicated to G. J. Smith, Inc. their ability to perform testing and any necessary remediation of the proposed lease site. Mr. Allred asked if this was possible rather than wait for an overall review.

Mr. Drake responded, the proposed G. J. Smith lot, in addition to several other lots in the Bunker, are identified as specific areas of concerns within the overall FUDS site. The Army Corp of Engineers (Corp) has indicated that if any soil disturbance takes place within this specific area it will jeopardize any Corp funding on the remediation. When Mr. Allred suggested G. J. Smith pay for the remediation of their parcel, Mr. Drake indicated if any parcel within this area is disturbed, it will jeopardize the entire site and the Commission cannot risk losing the Corp engaging in and paying for any needed remediation.

Mr. Drake added the tenants were put on notice but two awarded lots remaining from the 2013 Bunker Procurement do not have signed leases. Due to the unknown time frame of when the FUDS issue will be resolved, Mr. Drake noted an Agenda item for the 4/22/14 meeting will be to discuss withdrawing the Procurement for the two remaining pending leases.

Mr. Geoff Smith expressed his disappointment that Town Counsel hasn't responded with comments on a Lease draft since the November 26th meeting. Mr. Drake indicated Town Counsel won't respond as long as the FUDS issue remains open.

Pending Matters

070913-1 TON Memorandum of Understanding (MOU) – Mr. Rafter reported TON Chief Procurement Officer (CPO), Heidi Bauer and Silvio Genao, TON Engineer, who also holds CPO designation, presented the new draft procurement procedures for the Town at the Town Manger's Cabinet Meeting last Monday. Mr. Rafter noted his absence from that meeting but understands the new procedure would allow for the larger Departments to have a certified employee to be responsible for that Departments procurements and Ms. Bauer would engage in more of an audit role to ensure compliance. Once this procedure is finalized a new MOU document can be finalized.

Finance

041014-1 FY2014 Quarter Report – Mr. Rafter presented the 3rd quarter financials for the Airport which shows a slight profit just under \$55K. Mr. Rafter noted this includes payment of Debt Service but excludes any Subsidy or Encumbrance carryover.

Mr. Drake reminded the Commission that a member of the Finance Committee had visited the Airport to review the financials and noted leaving with a better understanding of the Airport's financial position.

041014-2 ATM Review – Mr. Rafter noted that none of the Airport Articles were called at ATM; and said the Capital items, Operating Budget and Fuel Revolver were all approved as submitted in the Warrant.

022613-2 Master Plan & Sustainability Program Update

Mr. Rafter reported that Jacobs IT consultant was on site yesterday and met with Schuyler Kuhl, the Airport's IT consultant, and Jenn Erichsen who is responsible for the Town phone system to get a better understanding of the systems in place. Jacobs will be preparing a road map of our IT needs and a plan of how to get there as part of the Master Plan.

The Airport received FAA approval letter of the aviation forecasts portion of the Master Plan.

Mr. Rafter indicated he met with a Jacobs representative conducting a candid client survey on their performance. As a result, Jacobs will be submitting weekly progress reports for the status of all the projects they are involved in. Mr. Rafter will forward to the Commission as they are received.

Manager's Report Project Updates

Mr. Rafter reported:

- The Grand Opening of the FBO is being re-scheduled to May 2, 2014 to not interfere with holiday or school vacation plans. Mr. Drake asked that a meeting be posted to all Commissioners to attend. Ms. Topham asked if the Garden Club had been contacted yet regarding plantings. Mr. Rafter responded not yet but intends to.
- Mr. Rafter added some other high profile opportunities for publicity may arise through the Carbon Neutral award announcement as well as the possibility of joining the Air Elite Program offered through World Fuel Services.
- Construction of Runway 15/33 REILs/PAPIs is scheduled to begin April 21st.week.
- The R/W 6 PAPI flight check was completed but has not yet been commissioned. The FAA needs to adjust some frequencies.
- Coordination is taking place with MassDOT and the VOLPE Center to award the Carbon Neutral Program to the most advantageous ESCO proposer.
- A final PFC Application has been submitted to the FAA and we are awaiting their decision. If approved, we will hopefully be collecting a PFC by July 1st.

RFP/Bid Status

- The IFB for the new ARFF vehicle is advertised. This is an FAA reimbursable purchase.
- The IFB for the Security Upgrades project will be advertised starting next week. This includes fence work, doors, locks, and training aids. This is an FAA reimbursable purchase.
- The re-advertisement of the Air Traffic Control Tower (ATCT) design RFQ has begun. The FAA was on site and held a Safety Management meeting to evaluate the three proposed sites for the mobile ATCT. As a result, site 1, just off the flat roof building was deemed to be the best option. Mr. Rafter added since the design and construction schedule was altered due to the re-bid process, the mobile tower may be in place during May and June, 2015
- **FUDS Update** Mr. Rafter reported we are still waiting for the Soil testing results from Weston Solutions. We are hoping to have them early next week.

Operations

- Mr. Rafter presented a letter written by Mr. Karberg addressing the NRTA Park and Ride proposal by the Board of Selectman and how it could potentially hurt Airport Revenue.
- Mr. Rafter presented a post Mr. Karberg made through the Airport's social media outlets to address concerns received over the proposed Passenger Facility Charge (PFC) and how it may relate to the new General Aviation building. Mr. Drake distributed his response to an email his wife received related to the same subject. Mr. Rafter added the purpose was to educate the public.
- Mr. Rafter reported two charter requests have been received. One is for a Boeing 737 and the other involves an MD80 which is a very long aircraft. Trying to work through the logistics to see if we can handle such large aircraft and will consult the airlines for their assistance if necessary. Discussion let to the need for an additional passenger ramp or set of air stairs in FY16 Capital.
- Mr. Rafter noted the Chamber of Commerce is hosting a Legislators Listening Tour on Monday and Mr. Rafter will be providing a tour of the Airport.
- The Airport's ARFF personnel have begun this year's fire training.

Staff Update

Mr. Rafter reported Ms. Christ has submitted her resignation as Business Manager. FBO employee Laura Clagg has resigned and has been replaced with Clement Johnson who was previously a seasonal employee. Hiring of seasonal staff is well underway and training schedules are being developed.

Mr. Rafter added the Airport's seasonal staffing house, the Thompson House, will be nearly full with Airport staff. The house rules have been strengthened to include weekly inspections.

Sub-Committee Reports

Environmental Sub-Committee: Mr. Gasbarro reported the Technical Advisory Committee associated with the Airport's conservation management permit met yesterday for their annual meeting. The two most notable points were the Control Burn contract which utilizes shared services with other Town Departments has proven difficult to utilize. The permit allows for some mechanical methods, like mowing, which may have to be done for the upcoming year; but future burns are recommended. The second notable point was the review of the rare plant survey performed as part of the Master Plan in which extensive finds in both quantity and variety were discovered. The Commission will have to plan future mitigation for projects that may disturb these areas.

Mr. Rafter added what will most likely be recommended in the Master Plan is a comprehensive plan for both wildlife and plant species.

Mr. Drake noted seeing the Nantucket Conservation Foundations newspaper notice of planned burns through May and asked if they could help. Mr. Rafter explained the mutual aide agreement is with the Land Bank. Limited resources and the amount of land each agency needs to burn combined with the limited number of burn days makes logistics of mutual aide very difficult to manage.

Mr. Drake noted the Sub-Committee assignment review will be postponed to the next meeting when all the Commissioners are physically present.

Commissioners Comments

Ms. Topham thanked Ms. Christ for her service.

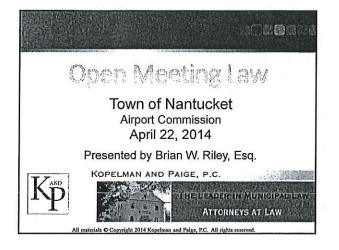
Mr. Gasbarro noted watching the meetings he missed and reviewed the minutes and feels he is up-do-date on all meeting information.

Mr. Gasbarro revisited the idea of enclosing the sidewalk entrance to the restaurant emphasizing his belief how this would help with the indoor climate. Mr. Rafter reported putting up a wind curtain, similar to the terminal entrance, towards the end of winter; however the recent blizzard destroyed it. Mr. Rafter plans on replacing and noted when looking at a solid wall, concerns over sprinkler and fire systems were raised. Mr. Rafter agreed to revisit this or other alternatives.

Ms. Planzer commended Mr. Karberg on both his letter regarding the park & ride issue as well as the social media post discussed earlier in the meeting.

Public Comment

None.


Having no further business, Mr. Gasbarro made a **Motion** to adjourn. **Second** by Ms. Planzer and **Passed** by the following roll-call vote:

Mr. Drake – Aye Mr. Gasbarro - Aye Ms. Topham – Aye Ms. Planzer – Aye Mr. Planzer – Aye Meeting adjourned at 5:50 pm. Respectfully submitted,

Janine M. Torres Recorder

Master List of Documents Used 4/10/14 Agenda & Updated Agenda including Exhibit 1 3/25/14 Draft Airport Commission Minutes 4/2/14 Warrant Commission Approval Sheet 4/7/14 Letter from Rafter to G.J. Smith and Accompanying Enclosures: G.J. Smith Lease Time Line handed out by Mr. Allred at the 3/25/14 Commission Meeting; 3/15/13 Letter from Torres to G.J. Smith re: RFP Award Notification; 1/27/14 Email String b/ Torres/Allred/Smith re: 21E Study Copies; 1/29/14 Letter from Rafter to Smith re: Unexploded Ordnance 4/10/14 Handout Statement from Allred (Handout) FY2014 Third Quarter Financial Summary Jacobs Engineering 4/7/14 Weekly Report 4/7/14 FAA Approval Letter of Master Plan Aviation Forecast 4/7/14 Letter from Karberg to Commission re NRTA Park & Ride Facebook Post Text re PFC 3/12/14 Email from Drake to Parkinson re: PFC (Handout) Airport Sub-Committee Assignments w/ Vacancy

Handox

Disclaimer

This information is provided as a service by Kopelman and Paige, P.C. This information is general in nature and does not, and is not intended to, constitute legal advice. Neither the provision nor receipt of this information creates an attorney-client relationship between the presenter and the recipient. You are advised not to take, or to refrain from taking, any action based on this information without consulting legal counsel about the specific issue(s).

Overview of Presentation

- Introduction to the "New" Open Meeting Law
- What Discussions are Subject to the Law
- E-mail Communications
- Meeting Notices
- Conducting the Meeting
- Executive Sessions
- Minutes
- Enforcement by the Division of Open Government

Kβ

这门梁**昌**后。

Open Meeting Law ("OML")

- Basic Facts
 - Open meeting, public records and conflict of interest laws (sometimes referred to as "sunshine laws") exist in virtually every state
 - Purpose of such laws is to eliminate much of the secrecy surrounding deliberations and decisions on which public policy is based
- MA OML (G.L. c.30A, §§18-25)
 - In Massachusetts, the OML was revised as part of the 2009 Ethics Reform Bill (replaced OML G.L. c.39, §§23A-23C)
 Effective luke 1, 2010
 - Effective July 1, 2010

The "New" OML

- Centralizes oversight and enforcement in Attorney General's Office – Division of Open Government or "D.O.G"
- Alters and inserts important statutory definitions
- Imposes requirements for and regulates meeting notices, minutes, executive sessions, exemptions, member participation and related administrative matters

Certification

- Must be done within 2 weeks of qualification for office
- Form prescribed by AG
- Acknowledge receipt of:
 - OML
 - Regulations promulgated by AG (pursuant to G.L. c.30A, §25)
 - Educational materials prepared by AG's office (pursuant to G.L. c.30A, §19)

Кър

- **3**2

Definition: Meeting

"[A] deliberation by a public body with respect to any matter within the body's jurisdiction...," with certain express exceptions.

Kp

Definition: Meeting (cont.) 2.200 Specifically excludes: A quorum at an on-site inspection so long as members don't deliberate Attendance by a quorum at a conference or training program or a media, social or other event so long as members don't deliberate Attendance by a quorum at meeting of another governmental body that has complied with the notice requirements of the OML so long as the visiting members communicate only by open participation in the meeting of those matters under discussion by host body as would others, and do not deliberate A meeting of a quasi-judicial board held for the sole purpose of making a decision in an adjudicatory proceeding Kp (State bodies only)

2

Definition: Meeting (cont.)

- Practical Considerations when quorum of public body intends to go to meeting of another board, or discovers upon arrival that a quorum is present:
 - Post later meeting of board or committee if members anticipate that they might want to discuss matters amongst themselves or respond to matters raised
 - Do not drive to meeting together, sit together, or talk to each other during the meeting
 - If a member wishes to speak, should be clear that the member is not representing the public body, but instead speaking as an individual
 - Post "joint" meeting to be held at same time and place

Meeting (cont.)

In OML 2012-69, the Carver School Committee was found to have violated the OML where a quorum of the Committee stepped outside a meeting of the Board of Selectmen to discuss an alternative to a ballot question relating to funding a school project.

Κp

Definition: Deliberation

"[A]n oral or written communication through any medium, including electronic mail, between or among a quorum of a public body on any public business within its jurisdiction...," with certain express exceptions.

Κp

Definition: Deliberation (cont.)

- Specifically <u>includes</u> e-mail communications
- Provided that no opinions of governmental body are expressed, specifically excludes:
 - Distribution of meeting agenda
 - Scheduling information
 - Distribution of other procedural meeting materials, reports or documents that may be discussed

Deliberation, cont.

- In OML 2012-93, the AG found that one individual member of the Stow School Building Committee violated the OML by e-mailing a quorum of members asking for comments on a power point. The committee members responding did not violate the law, according to the AG, because they did not "reply to all".
- In OML 2014-2, the AG found that an opinion in an email from a committee member to a private citizen constituted a deliberation because it was copied to a quorum of the committee.

Deliberation, cont.

In OML 2013-01, the AG acknowledged that "it can be difficult to determine when a communication serves an administrative function and when it contains substantive discussion in violation of the law. Our best advice continues to be that public bodies <u>not</u> communicate over e-mail <u>at all</u> except for distributing meeting agendas, scheduling meetings, and distributing documents created by non-members to be discussed at meetings."

 In OML 2014-2, the AG advised that to cure a violation caused by deliberation through e-mail, the entire email must be read out loud at a duly noticed public meeting.

Deliberation, cont.

- Practical considerations for board members include:
 - Don't ask for or express opinions, ideas, beliefs in an e-mail to other members
 - Never click on "reply to all"
 - Limit use of e-mail to scheduling purposes, and try to avoid using e-mail to undertake Town business
 - Assume that e-mail may be forwarded to unintended recipients, and therefore limit content to business matters; be prepared to read e-mail in local newspaper or blog

Definition: Public body

 "[A] multiple-member board, commission, committee or subcommittee within the executive or legislative branch or within any county, district, city, region or town, however created, elected, appointed or otherwise constituted, established to serve a public purpose; ...and provided further, that a subcommittee shall include any multiple-member body created to advise or make recommendations to a public body."

Definition: Public body (cont.)

- Subcommittee any multiple-member body created to advise or make recommendations to a public body
- Excludes committees or subcommittees appointed by sole officer who has authority to act independently, i.e., the socalled "Connelly Rule"

Кp

Definition: Public body (cont.)

- In OML 2012-28, the AG found that a Bylaw Review Committee consisting of seven members, including the Town Administrator, Town Clerk, Building Inspector, Town Planner, Conservation Agent, Director or Public Health, Police Chief and Superintendent of Public Works were a subcommittee subject to the OML because they were created by a vote of the Board of Selectmen.
- AG specifically found that the same group would not be subject to the OML if assembled by the Town Administrator.

Scheduling Meetings: Notice

• Timing:

 Requires notice to be posted at least 48 hours in advance of meeting, excluding Saturdays, Sundays and legal holidays

Manner:

 Must be filed with Town Clerk and posted in manner conspicuously visible to the public <u>at</u> <u>all hours</u> in or on municipal building housing clerk's office; AG's regulations now allow posting on website; AG must be notified

Scheduling Meetings: Notice

- Practical Implications
 - For a Monday meeting, notice must be posted on Thursday
 - If Monday is a holiday, a Tuesday meeting must also be posted on Thursday
 - Clerk should time stamp notice to ensure accurate record exists of filing
 - If posting is made in an "alternate location", notice must be timely posted in both locations

Scheduling Meetings: Notice

Practical Implications

- A meeting may not be continued from one night to the next <u>unless</u> the meeting is properly posted under the OML
- The notice required under the OML does not substitute for or otherwise supersede notice requirements under other applicable laws

K

Scheduling Meetings: Notice

- "Emergency" for purposes of OML:
 - Threat to public health and safety
 - Exception to 48 hour requirement; however, OML requires posting as soon as reasonably possible
 - Practical recommendations:
 - Comply with the law to the extent possible
 - Limit deliberations to emergency matter
 - Take minutes of meeting, and review and include with minutes of next regularly scheduled meeting.
 - When posting emergency meeting, consider posting a regular meeting as well, to allow body to ratify the action taken at emergency meeting.

Scheduling Meetings: Notice

- Content of Notice:
 - Notice shall include "a listing of topics that the chair reasonably anticipates will be discussed at the meeting"
 - This requirement has been interpreted by the AG to mandate that the notice include a listing of the particular <u>items</u> to be discussed, rather than general topics of discussion; must be detailed

Scheduling Meetings: Notice

- The general rule established by the AG is that the notice includes sufficient specificity when a reasonable member of the public can read the topic and understand the anticipated nature of the discussion.
- E.g., OML 2011-15 (Melrose) AG concluded that School Committee violated law by failing to include in notice of meeting name of non-union personnel with whom it would be negotiating.
- E.g., OML 2013-168 (Ashfield) AG found that topics such as "New Business", "Old Business" and "Executive Session if needed" were not sufficiently detailed.

Scheduling Meetings: Notice

- E.g., OML 2011-9 (Natick) –AG concluded that School Committee violated law by failing to include specific details of proposed vote on Town Meeting warrant articles where item simply listed "Town Meeting Update"
- Recommended that notice should have said, "Discussion of Town Meeting Warrant Articles 1, 9, 10, 18, 32, 33 and 35. The School Committee may vote to recommend action on these articles at Town Meeting."

Scheduling Meetings: Notice

- E.g., OML 2011-11 (Freetown) AG concluded that notice for Soil Board hearing was deficient where it listed "Renewal of Fall Soil Permits", as it reasonably anticipated that particular permits would be considered and "it should take the additional step of listing into the meeting notice the details of those specific permits, including the name of the applicant and the location under consideration."
- E.g., OML 2013-187 (Orange) although meeting notice informed the public that a change to regulations would be discussed, it was not sufficiently detailed because it did not specify that the discussion would be a public hearing.

Scheduling Meetings: Notice

- Practical Implications
 - If a matter does not appear on the meeting notice, and the Chair did not reasonably anticipate the matter would be discussed at meeting, the law does not prohibit consideration of same
 - However, AG recommends that unless matter requires immediate action, matter not appearing on meeting notice should be put off to later meeting for which posting includes matter

Scheduling Meetings: Notice

- Practical Implications
 - If a matter is brought to attention of Chair after notice has been posted, to the extent feasible, meeting notice may be updated to include such matter - useful to implement procedure/policy with respect to updating notice to clearly indicate time and content of update
 - May not be possible to update if staff cannot reach Chair, and/or if Chair discoversmatter shortly before meeting
 Kp

Scheduling Meetings: Notice

 E.g., OML 5-4-11 (Sturbridge) AG stated that although Board of Selectmen did not violate law by discussing matter not listed on meeting notice (matter was raised by member of public and not reasonably anticipated), body was "strongly encourag[ed] . . . not to consider topics that may be controversial or of particular interest to the public until the topic has been properly listed in a meeting notice in advance of a meeting."

Scheduling Meetings: Location

- Location of meeting must be accessible; required both by the OML and the ADA
- Practical considerations include:
 - Ability to meet in privately owned location
 - Moving meeting to different location (e.g., unanticipated attendance)

Къ

Кър

Closing door during open session

Scheduling Meetings: Location

 In OML 2012-46, the AG concluded the Melrose School Committee Superintendent Search Committee violated the OML where meeting was held in locked area of high school, and the public was unable to gain access once greeter "left"

Scheduling Meetings: Time

 Although the OML is silent with regard to the time that meetings must be held, in OML 2013-2, the AG stated that it "encourages" public bodies to schedule their meetings at a time that permits maximum attendance of public body members as well as the public.

Kÿ

- Practical considerations with public participation:
 - Allow? NOT required by OML
 - Beginning or end of meeting?
 - Controls:
 - Protect individual rights
 - Don't try to resolve issues at time; consider adding issue as agenda item at future meeting
 - Avoid debate
 - Limit time per person and total time

Conducting Meetings: Public Session

In OML 2012-48 the AG concluded that the West Brookfield Zoning Board of Appeals was not required to permit members of the public to participate in its meetings, and further that the Board was not required to accept petitions or agenda topics submitted by the public.

Conducting Meetings: Recording

- Under new OML, Chair must make public statement regarding audio or video recording if attendee intends to record (basis – MA wiretap statute)
- ✤ Recording by individuals:
 - Must inform the Chair
 - Chair must make required announcement
 - Chair may reasonably regulate recordings (placement, operation of equipment)

Кp

Кï

Conducting Meetings: Remote Participation

- Prior to new OML, most District Attorneys interpreted OML as prohibiting remote participation by a board member
- Under new OML, remote participation okay if authorized by AG by regulation, which it has been, as long as "chair" and quorum are physically present

Кp

Кø

Conducting Meetings: Remote Participation

- BOS must vote to allow Town boards to use, and any BOS policy applies to all boards; can impose additional limitations on use
- Quorum must be physically present
- Remote participants considered present and may vote
- Must be audible or visible to all in attendance
- May participate in executive sessions, provided that they certify that they are alone or that others cannot hear, or receive permission for others to be present.

Conducting Meetings: Executive Sessions

- New OML has changed the following with respect to executive sessions:
 - Process for going into executive session
 - Required timeline for review and release of minutes

Κp

New Executive Session Requirement

- Before going into the executive session, the chair must state the purpose for the session, "stating all subjects that may be revealed without compromising the purpose for which the executive session was called".
- In OML 2012-118, the AG concluded that this includes the name of a case in litigation, if doing so would not compromise the litigation.
- The vote to go into executive session must still be by roll call vote.
- Must still state whether the body is returning to open session.

New Executive Session Requirement

- Practical Implications
 - Public body must limit discussion in executive session to the matter(s) stated in the meeting notice (unless it was not reasonably anticipated by the Chair) and included in the vote to enter executive session

New Executive Session Requirement

Practical Implications

- In OML 2012-39, the AG found that the Amherst-Pelham Regional School Committee violated the law by stating that it was entering executive session for "contract negotiations", when it actually received an update on the status of collective bargaining negotiations.
- AG stressed that the precise reason for entering executive session must be stated, and that such action was not a "mere technical violation."

New Executive Session Requirement

Practical Implications

- In OML 2011-56, even though the complainant did not raise the issue, the AG found the Carver Board of Selectmen violated the law by not indicating the particular non-union personnel with whom it be negotiating
- In OML 2011-54, the West Newbury Board of Selectmen met in executive session to receive and discuss written communications from Town Counsel, listing "legal matters" on the meeting notice; the AG found this violated the law, and at a minimum needed to specifically cite G.L. c.30A, §21(a)(3) – strategy with respect to litigation

Exemptions to OML – Executive Sessions

- "(1) To discuss the reputation, character, physical condition or mental health, rather than professional competence, of an individual, or to discuss the discipline or dismissal of, or complaints or charges brought against, a public officer, employee, staff member or individual. ..."
- Adds right of individual to create independent record of session at own cost
- Meeting notice and vote need NOT refer to name of individual to be discussed

Exemptions (cont.)

- In OML 2013-2, the AG acknowledged that exemption 1 <u>allows</u> public bodies to discuss reputation, character, etc. in executive session, but public bodies are <u>not required</u> to discuss such matters in executive session.
- In OML 2012-119, the AG ruled that public bodies may discuss the resolution of OML complaints in executive session under exemption 1 because such complaints are complaints brought against public officers.

Кр

Exemptions (cont.)

"2. To conduct strategy sessions in preparation for negotiations with nonunion personnel or to conduct collective bargaining sessions or contract negotiations with nonunion personnel;

19 **19** 19

- 3. To discuss strategy with respect to collective bargaining or litigation if an open meeting may have a detrimental effect on the bargaining or litigating position of the public body and the chair so declares ..."
- 6. To consider the purchase, exchange, lease or value of real property *if the chair declares* that an open meeting may have a detrimental effect on the negotiating position of the public body

Exemptions (cont.)

 AG has found that OML requires that collective bargaining contracts negotiated in executive session be approved or ratified in open session. OML 2011-56.

9 N & 🖓 39 N

Kö

- Public bodies may agree on terms with individual nonunion personnel in executive session, but the final vote to execute such agreements must be in open session. OML 2013-194 and others.
- If entering executive session under exemptions 3 or 6, the public body cannot invite the "other side" to participate in the executive session.
 OML 2012-114.

Exemptions (cont.)

- To justify an executive session to discuss litigation, the AG has stated that the mere possibility of litigation is not sufficient. Litigation must be pending or clearly and imminently threatened or otherwise demonstrably likely.
- In OML 2012-116, the AG found that it was appropriate for the Nantucket Board of Selectmen and Planning Board to meet in executive session to decide whether to appeal a decision of the ZBA.

Kp

Exemptions (cont.)

- Practical considerations:
 - If executive session is anticipated, it must be listed in appropriate detail on <u>meeting notice</u>, with such specificity as is possible without compromising purpose of the session.
 - Related vote to enter executive session must also include all information possible without compromising purpose of session (i.e., name of non-union personnel or union must be identified in notice and vote if bargaining or negotiations will be conducted; case name to be discussed under litigation strategy must be listed, unless doing so would compromise Town's position); and declaration must be made, as needed

Conducting Meetings: Minutes

Must include:

- Time, date, place, members present and absent
- Summary of the discussions on each subject
- Decisions made and actions taken, including a record of all votes
- List of documents and other exhibits used by the body at the meeting, which will be "part of record" but not of minutes

Kβ

Conducting Meetings: Minutes

- The minutes must include a summary of the discussions of each topic. While a transcript of the discussion is not required, minutes must be sufficiently detailed to allow a person who was not in attendance to determine the essence of the discussion and what documents were used.
- The same rule applies to executive session minutes.
- In OML 2014-1, the AG found that although the law does not specify a time frame for approval of minutes, they should be approved at the next meeting if possible.

Къ

200**66**00

Conducting Meetings: Minutes

In OML 2012-101, the AG found that the Assessors' executive session minutes, stating only whether an abatement was granted, the amount of the abatement (if granted) and the vote, were not sufficiently detailed because there was no record of the discussion on each application. In OML 2012-42 the AG concluded that the Arlington Board of Selectmen violated the OML

Conducting Meetings: Minutes

- by failing to include a list of documents used at the meeting
- Stablished the following standards to determine if a document is "used":
 - Document is physically present at meeting; and
 - Document is verbally identified; and
 - Content of document is discussed by members

Kβ

Minutes (cont.)

- Open session meeting minutes "shall not be withheld under any of the exemptions to the Public Records Law", except that the following materials are exempt as personnel information:
 - materials used in a performance evaluation of an individual bearing on his professional competence that were not created by members of the body for purposes of the evaluation; and
 - materials used in deliberations about employment or appointment of individuals, including applications and supporting materials and excluding resumes

Executive Session Minutes

- Must be disclosed when purpose of exemption has been met, unless otherwise protected under the Public Records Law
- Must be reviewed periodically by chair or public body;
- Must be provided within 10 days in response to request, unless review not yet undertaken, in which case the minutes must be reviewed no later than the board's next meeting or 30 days, whichever occurs first

Enforcement Process

- Filing Complaint
 - Must first file written complaint with <u>public</u> <u>body</u>, within 30 days of alleged violation using form prepared by AG
 - Public body must forward complaint to AG within 14 <u>business</u> days of receipt and inform AG of any remedial action taken
 - Not less than 30 days after date complaint was filed with public body, complainant may file a complaint with AG

Enforcement (cont.)

- Public Body must consider complaint at properly posted meeting
 - Matter must appear on meeting notice
 - Body must acknowledge receipt of complaint
 - Should deliberate concerning allegations and possible resolution
 - Vote to resolve complaint
 - If appropriate, authorize response to be prepared and sent to Attorney General and Complainant

Enforcement (cont.)

Remedial action may include:

- making minutes of improperly called or held executive session public by including them as an addendum to minutes at a properly called meeting, or filing with Town Clerk
- creating minutes if the same were not properly created, or supplementing minutes if they were not sufficiently detailed
- providing for public deliberation and voting on matters considered at an improperly called or held meeting

Enforcement (cont.)

If public body cannot act to respond to complaint within statutory time frame, or if such action would be difficult based upon particular circumstances, the body may request an extension of the time from the DOG to respond

To ensure that such request is viewed in a manner most favorable to the public body, extension request should be requested before expiration of statutory response time

Кp

Enforcement (cont.)

• Cure:

Consistent with prior case law, the AG recognizes: "Public deliberation (at a properly posted open meeting) effectively cured the private discussion which occurred over email because it enabled the public to see the discussion that went into the creation of the policy. To cure a violation of the Open Meeting Law, a public body must make an independent deliberative action, and not merely a ceremonial acceptance or perfunctory ratification of a secret decision." See OML 2011-14 (Wakefield School Committee)

Enforcement (cont.)

- Once a complaint is filed, the Attorney General must:
 - Determine whether there has been a violation
 - Hold a hearing before imposing civil penalty
 - In the event a violation is found, determine whether the public body, or one or more of its members, or both, are responsible, and whether the violation was intentional

Кр

100

Enforcement (cont.)

In OML 2012-40, the AG determined that the Milford School Committee cured a violation of the OML, which occurred when a quorum deliberated outside a properly posted meeting, by raising the issue of the OML violation at the next meeting, explaining the nature of the violation, and recommending that the Committee reconsider its motion and vote at a later meeting after providing proper notice of the consideration of the subject

Kβ

 $\mathbf{K}_{\mathbf{p}}$

Enforcement (cont.)

- Upon finding a violation, the AG may issue an order to:
 - Compel immediate and future compliance with OML;

- Compel attendance at authorized training session;
- Nullify in whole or in part any action taken at meeting;
- Impose civil penalty upon public body of not more than \$1,000 for each intentional violation;
- Reinstate employee without loss of compensation, seniority, tenure or other benefits;
- Compel that minutes, records or other materials be made public; or K
- Prescribe other appropriate action

Enforcement (cont.)

Judicial Review of AG Order

- A public body or any member aggrieved by order may file certiorari action in Superior Court within 21 days of receipt of order
- AG order stayed pending judicial review
- If AG order nullifies action, public body shall not implement action

Enforcement (cont.)

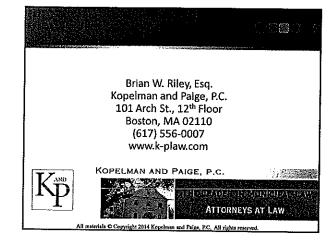
Compliance

- AG may file action in Superior Court to compel compliance with order or payment of civil penalty
- Alternative procedure
 - AG or 3 or more registered voters may initiate civil action in Superior Court to enforce OML

Kö

Resources

Attorney General's Office: http://www.mass.gov/ago


X

Attorney General's Open Meeting Law Website: http://www.mass.gov/ago/governmentresources/open-meeting-law/

Secretary of the Commonwealth Public Records Law:

http://www.sec.state.ma.us/pre/preidx.htm

Кp

Weston Solutions, Inc. Suite 100 45 Constitution Avenue Concord, New Hampshire 03301 603-656-5400 • Fax 656-5401 www.westonsolutions.com

The Trusted Integrator for Sustainable Solutions

18 April 2014

Mr. Thomas M. Rafter (Airport Manager) Nantucket Memorial Airport 14 Airport Road Nantucket, MA 02554

Subject: Nantucket Memorial Airport MCP Regulatory Status of Stockpile X

Dear Mr. Rafter:

Weston Solutions, Inc. (WESTON[®]) is pleased to submit this report to the Nantucket Memorial Airport (NMA) or ("Client") related to environmental consulting services performed in accordance with the WESTON proposal dated 05 February 2014. The purpose of these services was to assist the Nantucket Memorial Airport in assessing the Massachusetts Contingency Plan (MCP) compliance status of the "spoils" stockpile that contains soil removed from Area B, which is listed as a Formerly Used Defense Site (FUDS) under the Military Munitions Response Program (MMRP) No. D01MA049901. The MCP is the body of regulations that govern the assessment and cleanup of waste disposal sites in Massachusetts.

Based on our review of analytical data for samples obtained from the soil stockpile, NMA has an obligation to report a release of oil or hazardous materials (OHM) to the Massachusetts Department of Environmental Protection (MassDEP) in order to comply with the MCP. The concentrations of arsenic, nickel, and chromium in the soil samples obtained from the soil stockpile are greater than the respective Reportable Concentrations listed in 310 CMR1600, therefore NMA is obligated to report in accordance with 310 CMR 40.0315(1). This reportable condition must be reported not more than 120 days after "the person required to notify" obtains knowledge of the reporting obligation. The person required to notify is "the owner or operator of a vessel or a site from or at which there is or has been a release..." (310 CMR 40.0331(1)). If you are the "person required to notify" then the notification is due to MassDEP by 15 August 2014. If you are not the person required to notify, the reporting date can be adjusted to 120 days after that person obtains knowledge of the reporting date can be adjusted to 120 days after that person obtains knowledge of the reporting date can be adjusted to 120 days after that person obtains knowledge of the reporting date can be adjusted to 120 days after that person obtains knowledge of the reporting obligation.

MassDEP has proposed to change the Reportable Concentrations listed in 310 CMR 1600 and these changes would, based on the data we have obtained from the stockpile, remove the reporting obligation for nickel and chromium. Since it is almost certain these changes will occur before you are obligated to report it is possible you may only be required to report the presence of arsenic above the Reportable Concentration.

In addition to the above reporting obligation, please also be aware that the MCP regulates releases of certain explosives (310 CMR 40.0347 and 310 CMR 40.0321), with an exemption for explosives that are under the supervision of the Department of Defense (310 CMR 40.0317(5). Since the stockpile contains soil removed from FUDS Area B without screening for Unexploded Ordnance (UXO), the exemption would not apply if MCP-regulated explosives are found in the stockpile. In the event that a UXO item is encountered and identified in the stockpile, a 2-hour reporting obligation under the MCP would apply (310 CMR 40.0311(7)).

WESTON and its subcontractor VR Habilis performed UXO avoidance during the sampling program, in accordance with our safety plan. Mr. Tom Rancich of VR Habilis, who performed the screening, is a Navy trained and certified Level III UXO technician. Mr. Rancich used a Schonstedt Magnetic Locator (GA52CX) to identify and avoid areas of the stockpile where anomalous ferrous signals were higher than background, in order

to allow Lisa Kammer of WESTON to safely obtain the samples. Mr. Rancich did not see any visual evidence of UXO or munitions debris during our sampling program, and our analytical results do not indicate the presence of constituents of explosives. The only suspected UXO that we are aware of in this stockpile was encountered by NMA in December 2013 and reported to the Massachusetts State Police. The Massachusetts State Police Report of Investigation dated 31 December 2013 (Case No.: 2013-117-2122) did not provide data indicating that the item removed from the stockpile was explosive. According to the report, the item was transported, tamped and countercharged without confirming that it contained explosives. Based on all the information available to us at this time, we have concluded that a 2-hour reporting obligation under the MCP does not apply to the soil in the stockpile at this time.

A Stockpile Sample Location Map (Attachment 1-hard copy and data disc), Daily Inspection Report (Attachment 2-hard copy and data disc), a Laboratory Data Summary Table (Attachment 3-hard copy and data disc), Data Validation Report (Attachment 4-data disc only), and Laboratory Raw Data(Attachment 5-data disc only), are attached to this letter.

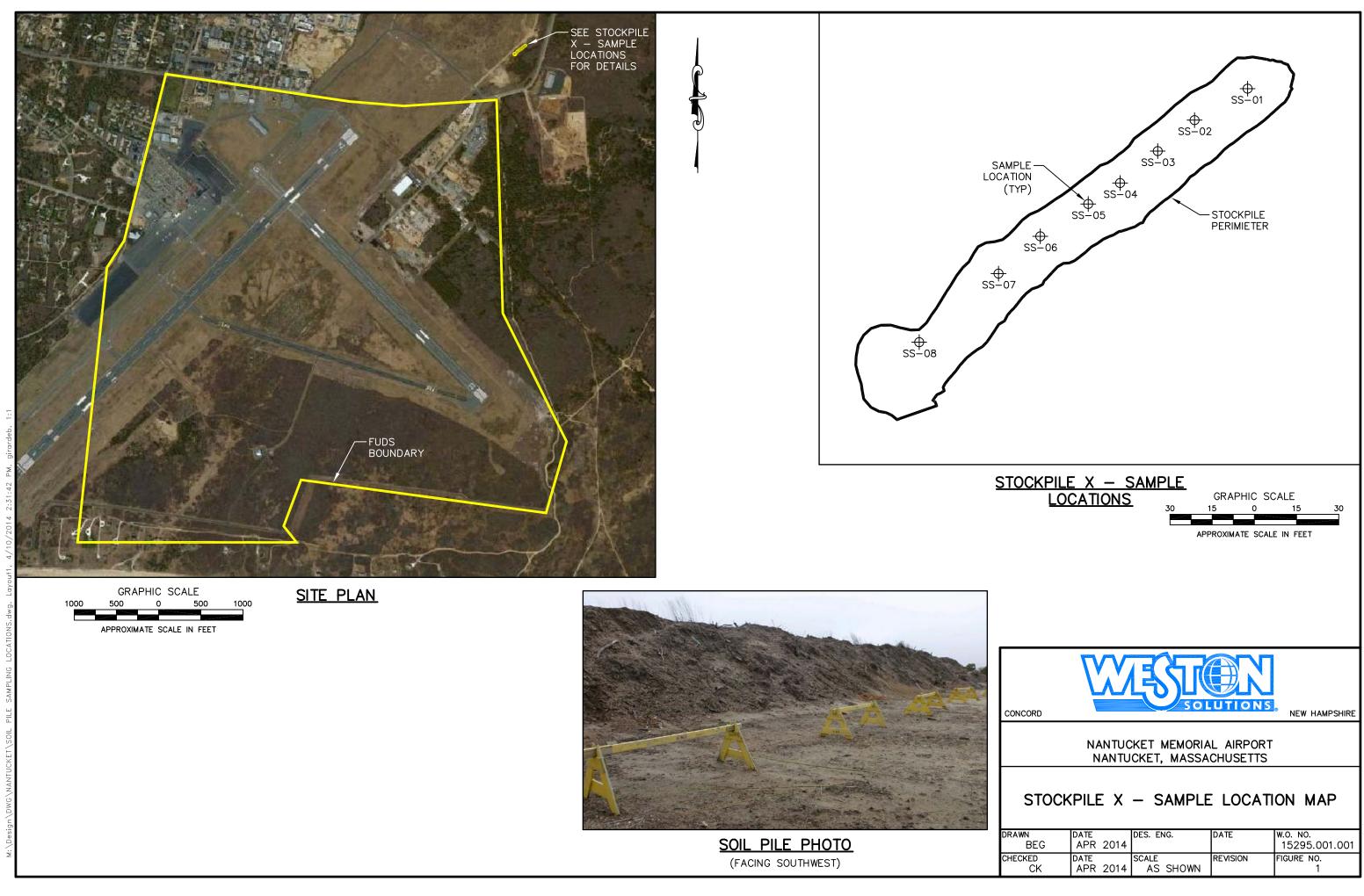
After NMA completes its reporting obligations, described above, NMA will also be subject to MCP requirements to plan and complete investigations and response actions by certain compliance dates. The MCP requires that a Massachusetts Licensed Site Professional (LSP) works on behalf of NMA and directs this work in a manner consistent with the requirements of the MCP and other relevant regulations and laws.

Under the MCP, any future handling, screening, and use of the soil in the stockpile must be done in accordance with a plan prepared by an LSP. We recommend that the stockpile be managed to prevent any direct contact with the stockpile until this plan has been prepared.

If you have any question or comments, please do not hesitate to contact me at (603) 656-5428.

Very truly yours,

Weston Solutions, Inc.


Cla A

Christopher G. Kane, PMP Senior Project Manager

Arthur J. Cunningham, P.E., L.S.P. Senior Technical Manager

Attachments

cc: N. Karberg, (Nantucket Memorial Airport) J. Torres (Nantucket Memorial Airport) B. Campbell (WESTON) Attachment 1 (hardcopy and data disc)

Attachment 2 (hard copy and data disc)

Daily Summa Nantucket Memo Environmental	orial Airport	SOLUTIONS.
Contract Number:/Report Number: NMA 00934.907.123/002	WORK ORDER NO.: 15295.001.001.4000	DATE 20 March 2014 - Thursday
WEATHER: Mostly cloudy/clear (morning precip = Source: Nantucket Airport Weather S		
WORK LOCATION: Nantucket Airport WORK HOURS: Onsite 1045-hrs to 1430-hrs		
VISITORS(Name/firm): Noah Karberg / NMA / Environmental Coordinator		
WESTON STAFF (Name/Position)	SUBCONTRACT STA	FF (Name/Position)
Lisa Kammer - Geoscientist		bilis / UXO Technician III
WORK COMPLETED: Surveyor activities. Mag and Dig activities (List grid or location) DGM activities (List grids) Reacquisition of DGM anomaly targets (List grid Grid QC List (List completed grids) Explosives Receipt Test Pitting Blow In Place Comments: WESTON completed GPS coordinates of (designated piles 1 through 4) at originat Avoidance support was provided by V.R Vehicle escort provided by Nantucket Me MATERIALS DELIVERED (Amount, Condition, and another suppling materials and equipment we	ds) Equipment Mainter Equipment Issues Investigation Samp Aerial Mag Background Soil S Clearing/Vegetation ockpile X including 8 primary soil samp ting MRS location. Habilis using a schonstedt locator. emorial Airport.	scort activities ort (mob/demob to/from site-List) nance (List below) bling ampling n Removal mples from 0-6" below ground surface, 1 duplicate ling locations, and remaining stockpiles
PROBLEMS/RESOLUTIONS: No problems were encountered and no resource encountere	munitions items were identified.	
DATA TRACKING:		
Data Provided to WESTON:		
None		
Data Provided to NMA:		
See attached photos and chain of custor	dy.	
Comments:		
Samples were transported via ferry/vehic	cle to Weston Solutions, Inc. office i	n Concord, NH for overnight storage. Samples

will be picked up via courier on 21 March 2014 by Ka Scarborough, ME laboratory for metals and explosive	tahdin Analytical Services, Inc. and delivered same day to the es analysis.
FURTHER DISCUSSION (List Topic and Comment):	
Determination of whether stockpiles can be safely co	vered.
PREPARED BY:	SIGNATURE:
Lisa Kammer – Project Geoscientist	CE Hane
	REVIEWED By kanec at 4:12 pm, Mar 21, 2014

Attach applicable logs and reports below (QC Report, photo log, etc.)

<u>Photo Log</u>

032014-01 Stockpile X – looking northeast

032014-03 Stockpile X – looking southwest

032014-04 Pile 1 on MRS

032014-05 Pile 2 on MRS

032014-06 Pile 3 on MRS

032014-07 Pile 4 on MRS

AAA Katal		fechnology Wa	y 4024	#2	Coo	lers	° C	HAI	N of	CUS	ΤΟΙ	DY					
ANALYTICAL SER	VICES Tel:	207) 874-240 (207) 775-402						PLEA PRII	SE BEA NT LEG	R DOW	N AND PEN		Page	c	of _		
Client WESTON SO	IAL SO D NK	-			Conta		HIE		Phone #	10	<u></u>		ax #				
Address 45 CONST				City		CORD State NH Zip Code 03301											
Durahaan Orden #			Proj	. Name /	No. NM	AINT	<u>,</u>								1 Rev		
Bill (if different than abov	08211 "	2				ddress	529	.00	1 <u>.001</u> .	7000				- yer	10		
Sampler (Print / Sign))15	a Ka	~~~~	~ ~						Сорі	es To:	Jennit	èr€b	íΛ			
LAB USE ONLY	WORK ORDE	the second s							ANALYS		ONTAR	NER TYP			1. k		
	KATAHDIN PF	ROJECT NU	MBER _		<u> </u>	Filt.	Filt.		Filt. ⊡Y ∰N	Filte	Filt,	Filt,	Filt.		Filt		
REMARKS:						*		8		~		<i>a</i>	ST				
	FED EX	O UP	S	C CLI	ENT	METHLS (J.)* 30 50 B/60 104	44	50	t ves	ACID M	4	o contre	170	₿.₼			
			ACT			722 190	I-F	107 107	202	230		CHILD CHILD	ovs oft	20)		
* Sample Desci	iption	Date / T coll		Matrix	No. of Cntrs.	METAN	#ILLHE	210	EXPLOSIVI B330A	PICRIC B330	TEN 351.	PERCIMO	S JW	16YO	۲Ľ		
55-01		3/20/14/	1900	surface		×	X	×	X	X	×	X	Х	X	X		
55-02		/	1215		4	1	1	1	1	1	1	1					
55-03		/	1230		4												
55-04		/	1745		Ч												
55-05		/	1750		4												
55-0p		/	1255		Ч												
55-07*		/	1300		13												
55-08		/	1315		4												
55-03-D		\downarrow /	1730	\downarrow	4		b	4	\downarrow	4	Y	4	4	Ý	4		
		/															
		/															
		/															
		/							1								
		/															
		/															
		/															
COMMENTS * extra				or M	s/msD).**	AI, S	b, As,	BA, B	e, Cd	, Cr, C	o, Ch,	Fe, P	o, Mg	jiMn		
LEVEL III. Relinquished By: (Signa		e / Time		ived By:	Signature	-) F	Relinquist		signature		te / Ti			By: (Sign	atura)		
Heinquistied By. (Sight		1999 1997 	s /	Star Ly. 1	,⊖ignaturt } / .		ioniquisi	юй Бу. (orginature	, Da		He H	eceived	Jy. (Sign	aure)		
Relinquished By: (Signa	ature) Date	e / lime	Rece	ived By:	Signature	e) F	Relinquist	ned By: (Signature	e) Da	te / Tir	me R	eceived	By: (Sign	nature)		
649/		14															

THE TERMS AND CONDITIONS ON THE REVERSE SIDE HEREOF SHALL GOVERN SERVICES. EXCEPT WHEN A SIGNED CONTRACTUAL AGREEMENT EXISTS.

1. RIGHAL

Attachment 3 (hard copy and data disc)

Nantucket Memorial Airport Stockpile X Data Summary Nantucket, Massachusetts

			Ka	atahdin Soil Lin	nits	МСР	МСР	МСР	МСР	Soil Samples - NMA Stockpile X								
Target List	CAS	EPA Method	LOQ	LODs	MDLs	RC S-1	RC S-1	RC S-2	RC S-2	SS-01	SS-02	SS-03	SS-03D	SS-04	SS05	SS06	SS07	SS08
						(2008)	(2014)	(2008)	(2014)	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014
Semivolatile Organic Compounds			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Aniline	62-53-3	8270C	820	615	91	1000000		1000000		980U	950U	900U	940U	1000U	970U	950U	960UJ	980U
Phenol	108-95-2	8270C	330	248	156	1000		20000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Bis (2-Chloroethyl) Ether	111-44-4	8270C	330	248	81	700		700		390U	380U	360U	380U	400U	390U	380U	390U	390U
2-Chlorophenol	95-57-8	8270C	330	248	164	700		100000		390U	380U	360U	380U	400U	390U	380U	390U	390U
1,3-Dichlorobenzene	541-73-1	8270C	330	248	78	1000	3000	40000	200000	390U	380U	360U	380U	400U	390U	380U	390U	390U
1,4-Dichlorobenzene	106-46-7	8270C	330	248	86	700		4000	1000	390U	380U	360U	380U	400U	390U	380U	390U	390U
1,2-Dichlorobenzene	95-50-1	8270C	330	248	88	9000		30000	100000	390U	380U	360U	380U	400U	390U	380U	390U	390U
2-Methylphenol	95-48-7	8270C	330	248	200	500000		5000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
2,2'-Oxybis(1-chloropropane)	52438-91-2	8270C	330	248	89	NA		NA		390U	380U	360U	380U	400U	390U	380U	390U	390U
3&4-Methylphenol	615-62-3	8270C	330	248	187	500000		5000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Hexachloroethane	67-72-1	8270C	330	248	96	700		3000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Nitrobenzene	98-95-3	8270C	330	248	91	500000		5000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Isophorone	78-59-1	8270C	330	248	75	100000		1000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
2-Nitrophenol	88-75-5	8270C	330	248	167	100000		1000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
2,4-Dimethylphenol	105-67-9	8270C	330	248	165	700		100000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Bis(2-chloroethoxy)methane	111-91-1	8270C	330	248	96	500000		500000		390U	380U	360U	380U	400U	390U	380U	390U	390U
2,4-Dichlorophenol	120-83-1	8270C	330	248	150	700		40000		390U	380U	360U	380U	400U	390U	380U	390U	390U
1,2,4-Trichlorobenzene	120-82-1	8270C	330	248	81	2000		70000	6000	390U	380U	360U	380U	400U	390U	380U	390U	390U
Naphthalene	91-20-3	8270C	330	248	87	4000		40000	20000	390U	380U	360U	380U	400U	390U	380U	390U	390U
4-Chloroaniline	106-47-8 87-68-3	8270C	330	248	119	1000	00000	3000	40000	390UJ	380UJ	360UJ	380UJ	400UJ	390UJ	380UJ	390UJ	390UJ
Hexachlorobutadiene	91-57-6	8270C 8270C	330	248	83	6000	30000	90000	10000	390U	380U	360U	380U	400U	390U	380U	390U	390U
2-Methylnaphthalene	88-06=2	8270C 8270C	330 330	248 248	92 155	700 700		80000 20000		390U 390U	380U 380U	360U 360U	380U 380U	400U 400U	390U 390U	380U 380U	390U 390U	390U 390U
2,4,6-Trichlorophenol 2,4.5-trichlorophenol	95-95-4	8270C	820	615	155	4000		600000		980U	950U	900U	940U	400U 1000U	970U	950U	390U 906U	390U 980U
2,4,5-thchlorophenol 2-Chloronaphthalene	91-58-7	8270C	330	248	87	10000		1000000		390UJ	9500 380UJ	360UJ	380UJ	400UJ	390UJ	9500 380UJ	3900U 390UJ	390UJ
Dimethyl phthalate	131-11-3	8270C	330	248	78	30000	700	50000		39003 390U	38003 380U	360U	38003 380U	40005	390U	380U	390U 390U	390U
Acenaphthylene	208-96-8	8270C	330	248	70	1000	700	10000		390U	380U	360U	380U	400U	390U	380U	390U	390U
2.6-Dinitrotoluene	606-20-2	8270C	330	248	79	10000		1000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Acenaphthene	83-32-9	8270C	330	248	65	4000		3000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
2,4-Dinitrophenol	51-28-5	8270C	820	615	377	3000		50000		980U	950U	900U	940U	1000U	970U	950U	960U	980U
4-Nitrophenol	100-02-7	8270C	820	615	309	100000		1000000		980UJ	950UJ	900UJ	940UJ	1000UJ	970UJ	950UJ	960UJ	980UJ
Dibenzofuran	132-64-9	8270C	330	248	79	100000		1000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
2,4-Dinitrotoluene	121-14-2	8270C	330	248	85	700		10000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Diethylphthalate	84-66-2	8270C	330	248	80	10000		200000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Fluorene	86-73-7	8270C	330	248	81	1000000		3000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
4-Bromophenyl-phenylether	101-55-3	8270C	330	248	85	100000		1000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Hexachlorobenzene	118-74-1	8270C	330	248	82	700		5000	800	390U	380U	360U	380U	400U	390U	380U	390U	390U
Pentachlorophenol	87-86-5	8270C	820	615	237	3000		10000		980U	950U	900U	940U	1000U	970U	950U	960U	980U
Phenanthrene	85-01-8	8270C	330	248	83	10000		1000000		390U	380U	360U	380U	400U	390U	150J	390U	390U
Anthracene	120-12-7	8270C	330	248	84	1000000		3000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Di-n-butylphthalate	84-74-2	8270C/D	330	248	101	50000		500000		380J	400	360U	380U	1600	390U	380U	390U	390U
Fluoranthene	206-44-0	8270C	330	248	106	1000000		3000000		390U	380U	360U	140J	400U	390U	360J	130J	390U
Pyrene	129-00-0	8270C	330	248	300	1000000		3000000		390U	140J	360U	140J	400U	390U	360J	250J	390U
Butlybenzylphthalate	85-68-7	8270C	330	248	300	100000		1000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
3,3'-Dichlorobenzidine	91-94-1	8270C	330	248	114	1000	3000	10000	20000	390U	380U	360U	380U	400U	390U	380U	390UJ	390U
Benzo(a)anthracene	56-55-3	8270C	330	248	86	7000		4000		390U	380U	360U	380U	400U	390U	180J	390U	390U
Chrysene	218-01-9	8270C	330	248	95	70000		400000		390U	380U	360U	380U	400U	390U	200J	390U	390U
Bis(2-ethylhexyl)phthalate	117-81-7	8270C	330	248	98	200000	90000	700000	600000	390U	380U	360U	380U	400U	140J	380U	390U	390U
Di-n-octylphthalate	117-84-0	8270C	330	248	211	100000		1000000		390U	380U	360U	380U	400U	390U	380U	390UJ	390U
Benzo(b)fluoranthene	205-99-2	8270C	330	248	134	7000		40000		390U	380U	360U	380U	400U	390U	240J	390UJ	390U
Benzo(k)fluoranthene	207-08-9	8270C	330	248	83	70000		400000		390U	380U	360U	380U	400U	390U	130J	390UJ	390U

Nantucket Memorial Airport Stockpile X Data Summary Nantucket, Massachusetts

			Ka	atahdin Soil Lim	nits	МСР	MCD	MOD	MCD	Reil Semples ANA Stephnik Y								
Target List CAS EPA Method LOQ L		LODs MDLs		RC S-1	MCP RC S-1	MCP RC S-2	MCP RC S-2	Soil Samples - NMA Stockpile X SS-01 SS-02 SS-03 SS-04 SS05 SS06 SS07 SS07										
	0,10	Livinouiou	200	2000	IIID LO	(2008)	(2014)	(2008)	(2014)	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	SS08 3/20/2014
Benzo(a)pyrene	50-32-8	8270C	330	248	93	2000	. ,	4000	7000	390U	380U	360U	380U	400U	390U	190J	390UJ	390U
Indeno(1,2,3-cd)pyrene	193-39-5	8270C	330	248	122	7000		40000		390U	380U	360U	380U	400U	390UJ	380U	390UJ	390U
Dibenzo(a,h)anthracene	53-70-3	8270C	330	248	128	700		4000		390U	380U	360U	380U	400U	390UJ	380U	390UJ	390U
Benzo(g,h,i)perylene	191-24-2	8270C	330	248	104	1000000		3000000		390U	380U	360U	380U	400U	390UJ	380U	390UJ	390U
Acetophenone	98-86-2	8270C	330	248	178	1000000		1000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Azobenzene	103-33-3	8270C	660	495	138	NA		NA		790U	760U	730U	760U	800U	780U	760U	770U	790U
n-Nitrosodiphenylamine	86-30-6	8270C/D	330	248	219	100000		1000000		390U	380U	360U	380U	400U	390U	380U	390U	390U
Explosives			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
НМХ	2691-41-0	8330	100	50	8.6	2000		100000		100U	99U	98U	93U	92U	100U	100U	100U	100U
PETN	78-11-5	8330	800	400	108	NA		NA		800U	790U	780U	740U	740U	800U	800U	800U	800U
RDX	121-82-4	8330	100	50	6.8	1000		60000	80000	100U	99U	98U	93U	92U	100U	100U	100U	100U
1,3,5-Trinitrobenzene	99-35-4	8330	100	50	6.7	50000		500000		100U	99U	98U	93U	92U	100U	100U	100U	100U
1,3-Dinitrobenzene	99-65-0	8330	100	50	6.2	100000		1000000		100U	99U	98U	93U	92U	100U	100U	100U	100U
Tetryl	479-45-8	8330	100	50	5.4	100000		100000		100U	99U	98U	93U	92U	100U	100U	100U	100U
Nitrobenzene	98-95-3	8330	100	50	22	500000		500000		100U	99U	98U	93U	92U	100U	100U	100U	100U
Nitroglycerin	55-63-0	8330	800	400	124	50000		500000		800U	790U	780U	740U	740U	800U	800U	800U	800U
2.4,6-Trinitrotoluene	118-96-7	8330	100	100	6.7	100000		1000000		100U	99U	98U	93U	92U	100U	100U	100U	100U
4-Amino-2,6-dinitrotoluene	35572-78-2	8330	100	50	21	NA		NA		100U	99U	98U	93U	92U	100U	100U	100U	100U
2-Amino-4,6-dinitrotoluene	19406-51-0	8330	100	50	17	NA		NA		100U	99U	98U	93U	92U	100U	100U	100U	100U
2,6-Dinitrotoluene	606-20-2	8330	100	50	27	100000		1000000		100U	99U	98U	93U	92U	100U	100U	100U	100U
2,4-Dinitrotoluene	121-14-2	8330	100	50	15	700		10000		100U	99U	98U	93U	92U	100U	100U	100U	100U
2-Nitrotoluene	88-72-2	8330	100	50	12	500000		500000		100U	99U	98U	93U	92U	100U	100U	100U	100U
4-Nitrotoluene	99-99-0	8330	100	50	27	500000		500000		100U	99U	98U	93U	92U	100U	100U	100U	100U
3-Nitrotoluene	99-08-1	8330	100	50	7.9	500000		500000		100U	99U	98U	93U	92U	100U	100U	100U	100U
1,2-Dinitrobenzene	-	8330	NA	NA	NA	NA		NA		81.1%	89.7%	88.3%	92.9%	82.2%	83.1%	88.6%	92.6%	91.0%
Perchlorate (Subcontracted to Microbac)	14797-73-0	6850	2.47	1.24	-	100		5000		ND	ND	ND	ND	ND	ND	ND	2.64	ND
Total Solids	- 88-89-1	160.3M 8330M	NA	NA	NA	NA		NA 1000000		83.2% NDU	80.7% NDU	86.9% NDU	86.4%	83.8% NDU	78.7% NDU	85.6% NDU	83.5% NDU	77.8% NDU
Picric Acid (Subcontracted to ALS) Metals -ICP	00-09-1	8330101	10	- ma/Ka	malka	100000	malKa		mg/Kg	-	mg/kg	-	NDU ma/ka	-	mg/kg	_		mg/kg
Aluminum	7429-90-5	6010	mg/Kg 30	mg/Kg 10	mg/Kg 0.71	mg/Kg 100	mg/Kg	mg/Kg 1000	ilig/rtg	mg/kg 2770	2890	mg/kg 3130	mg/kg 3300	mg/kg 3270	2250	mg/kg 5170	mg/kg 3660	3330
Antimony	7440-36-0	6010	0.80	0.50	0.070	20		30		.63UJ	.52UJ	.42UJ	.55UJ	.58UJ	.88J	.54UJ	.09J	.65UJ
Arsenic	7440-38-2	6010	0.80	0.50	0.068	20		20		.0303 1.47U	1.86U	.+203 1.44U	.3303 1.4U	1.64U	21.2	2.73	1.7U	.0305 1.44U
Barium	7440-39-3	6010	0.50	0.30	0.000	1000		3000		6.02	7.73	5.72	6.31	8.87	9.5	20.5	12.5	13.7
Beryllium	7440-41-7	6010	0.50	0.05	0.0068	1000	90	200		.09J	.09J	.1J	.11J	.1J	.06J	.18J	.13J	.09J
Cadmium	7440-43-9	6010	1.0	0.30	0.01	2	70		100		.000	.07J		0.37	1.1J	.14J	.100 .22J	.32J
Chromium	7440-47-3	6010	1.5	0.40	0.03	30	100		100	3.89J	4.37J	4.54J		4.62J	36J	5.32J	12.2J	4.3J
Cobalt	7440-48-4	6010	3.0	0.40	0.03	500		5000		.41J	.54J	.47J	.44J	0.44J	6.93	0.75	1.02	
Copper	7440-50-8	6010	2.5	1.0	0.16	1000		10000		4.66	4.72	2.59		7.14	129	11.8	4.42	
Iron	7439-89-6	6010	10	8.0	1.4	NA		NA		4480	5290	4470		5380	47200	7710	5610	
Lead	7439-92-1	6010	0.5	0.40	0.09	300		300	600		24.2	9.16		18.3	74.4	22.2	18.7	14.9
Magnesium	7439-95-4	6010	10	8.0	0.68	NA		NA		352J	363J	390J	360J	546J	287J	656J	1040J	318J
Manganese	7439-96-5	6010	0.5	0.40	0.16	NA		NA		26.2	28.4J	23.7J	23.8J	33J	185J	62J	43.3J	26J
Molybdenum	7439-98-7	6010	1.0	0.80	0.05	NA		NA		.25J	.22J	.16J	.13J	.02J	5.92	.28J	.09J	.29J
Nickel	7440-02-0	6010	4.0	0.40	0.04	20	600	700	1000		2.39	1.74	1.62	2.02	65	2.43	3.79	
Selenium	7782-49-2	6010	1.0	0.70	0.17	400		800	700		.64U	.52U	.16J	.19J	2.3U	.13J	.76U	.2J
Silver	7440-22-4	6010	1.5	0.40	0.03	100		200		.11J	.1J	.06J	.06J	.08J	.32J	.1J	.09J	
Thallium	7440-28-0	6010	1.5	0.50	0.09	8		60		1.2U	.08UJ	.78U	1U	1.1U	3.4U	1U	1.1U	1.2U
Vanadium	7440-62-2	6010	2.5	0.40	0.04	600	400	1000	700	7.54	8.01	7.42	7.48	8.07	6.74	9.75	9.93	
Zinc	7440-66-6	6010	2.5	1.0	0.17	2500	1000	3000		35.4	33.4	17.7	11.7	47.1	123	28.9	30.7	45.6
Zirconium	7440-67-7	7471/7470	10	8.0	2.00	100		1000		10U	6.7U	5.5U	6.3U	7.1U	6.4U	6.5U	9U	8.6U
Mercury			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Mercury	7439-97-6	7471/7470	0.033	0.017	0.0052	20		20		.017J	.022J	.015J	.015J	.018J	.021J	.018J	.024J	.016J

Nantucket Memorial Airport Stockpile X Data Summary Nantucket, Massachusetts

			Katahdin Soil Limits			МСР	МСР	МСР	МСР				Soil Sa	amples - NMA Sto	ockpile X			
Target List	CAS	EPA Method	LOQ	LODs	MDLs	RC S-1	RC S-1	RC S-2	RC S-2	SS-01	SS-02	SS-03	SS-03D	SS-04	SS05	SS06	SS07	SS08
						(2008)	(2014)	(2008)	(2014)	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014
WET CHEMISTRY			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Total Solids	-	SM2540G	NA	NA	NA	NA		NA		83.0%	82.0%	87.0%	87.0%	81.0%	81.0%	85.0%	84.0%	82.0%
Total Kjeldahl Nitrogen	7727-37-9	EPA 351.2	31	15	7.3	NA		NA		780	1200	570	570	920	1100	790	720	1000
Total Cyanide	57-12-5	M9012B	0.5	0.4	0.27	100	30	400	100	.6U	.5U	.5U	.5U	.5U	.45J	.5U	.55U	.5U

Notes

Category S-1 Standards: Concentrations based on sensitive uses of the property and accessible soil, either currently or in the foreseeable future. Additional criteria are established for the protection of gw, based on the leaching potential of the contaminated soil. Category S-2 Standards: Concentrations based on property uses associated with moderate exposure and accessible soil, either currently or in the foreseeable future. Additional criteria are established for the protection of gw, based on the leaching potential of the contaminated soil. RC S-1 & RC S-2 RC S-1 and RC S-2 (2008) criteria and RC S-1 and RC S-2 (2014) are both presented for informational purposes. The 2014 criteria are in effect as of 4-25-14

- CAS: Chemical Abstract Service
- NUT: Essential Nutrient
- NSL No Screening Level
- NA: Not Applicable
- U: Undetected
- J: Estimated
- mg/Kg: milligrams/kilogram
- ug/Kg: micrograms/kilogram
- SS: Soil Sample
- MCP: Massachusetts Contingency Plan
- LOQ: Limit of Quantitation
- LOD; Limit of Detection
- MDL: Method Detection Limit
- NMA: Nantucket Memorial Airport
- Bold: Data in bold represents revisions in qualifiers made by chemist as part of Tier III validation
- Highlight Value exceeds corresponding RC S-1 or RC S-2 criteria

Attachment 4 (data disc only)

NANTUCKET MEMORIAL AIRPORT SITE KATAHDIN ANALYTICAL SERVICES, INC. DATA VALIDATION REPORT

Date: April 8, 2014

Laboratories Katahdin Analytical Services, Inc. (KAS), Scarborough, Maine; ALS Environmental (ALS), Kelso, Washington; Microbac Laboratories (MICRO), Marietta, Ohio Laboratory Project #s: SH1786 (KAS); K1402957 (ALS); L14031356 (MICRO) Data Validation Performed By: Linda Korobka, Weston Solutions, Inc. (WESTON)

This data validation report has been prepared by WESTON for the Nantucket Memorial Airport site. This report documents the data validation for eight assessment soil samples and one assessment soil duplicate sample that were analyzed for the following parameters and U.S. Environmental Protection Agency (U.S. EPA) methods:

- Semi-Volatile Organic Compounds (SVOCs) by EPA SW-846 Method 8270C
- Explosives by EPA SW-846 Method 8330
- Total Metals by ICP-AES by EPA SW-846 Method 6010C
- Zirconium by ICP-AES by EPA-SW-846 Method 6010C
- Total Mercury by CVAA by EPA SW-846 Method 7471B
- Total Cyanide by EPA SW-846 Method 9012B
- Total Kjeldahl Nitrogen by EPA Method 351.2
- Picric Acid by EPA SW-846 Method 8330M
- Perchlorates by EPA SW-846 Method 6850

A tier III data package was requested from KAS, ALS and MICRO. KAS performed the SVOC, Explosives, Total Metals, Mercury, Total Cyanide and Total Kjeldahl Nitrogen analyses. ALS performed the Picric Acid analyses and MICRO performed the Perchlorates analyses. The data validation was conducted in general accordance with the U.S. EPA "Contract Laboratory Program National Functional Guidance for Superfund Organic Methods Data Review" dated June 2008, the "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review" dated January 2010 and the site-specific Field Sampling Plan and Quality Assurance Project Plan. The Attachment contains the results summary sheets with the hand-written qualifiers applied during data validation.

SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) by EPA SW-846 METHOD 8270C

1. Samples

The following table summarizes the sample for which this data validation was conducted.

Samples	Lab ID	Matrix	Date	Date	Date
			Collected	Prepared	Analyzed
SS-01	SH 1786-1	Soil	3/20/2014	3/25/2014	3/27/2014
SS-02	SH 1786-2	Soil	3/20/2014	3/25/2014	3/27/2014
SS-03	SH 1786-3	Soil	3/20/2014	3/25/2014	3/27/2014
SS-04	SH 1786-4	Soil	3/20/2014	3/25/2014	3/27/2014
SS-05	SH 1786-5	Soil	3/20/2014	3/25/2014	3/31/2014
SS-06	SH 1786-6	Soil	3/20/2014	3/25/2014	3/27/2014
SS-07	SH 1786-7	Soil	3/20/2014	3/25/2014	3/27/2014
SS-08	SH 1786-8	Soil	3/20/2014	3/25/2014	3/27/2014
SS-03-D	SH 1786-9	Soil	3/20/2014	3/25/2014	3/27/2014

2. Holding Times

The samples were analyzed within the required holding time limit of 14 days from sample collection to extraction and 40 days from extraction to analysis. Samples were received in two coolers at 1.1°C and 0.8°C. This is outside the required receipt temperature of $4^{\circ}C \pm 2^{\circ}C$, but since the samples were not frozen, no action was taken.

3. <u>Blanks</u>

The method blank (WG 140392-1) associated with all samples was free of contamination.

4. <u>Surrogates</u>

All surrogate recoveries were within the laboratory-established quality control (QC) limits for percent recovery, except for Terphenyl-d14 (145%) for sample SS-07. Positive detections in sample SS-07 were already flagged as estimated (J) so no further action was taken.

5. Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Results

KAS analyzed an MS and MSD using sample SS-07 as the spiked sample. The percent recoveries for the MS were within QC limits, except for aniline (20.7%), 4-chloroaniline (18.4%) and 3,3'-dichlorobenzidine (3.66%). The MS/MSD RPD values were acceptable. The MSD for aniline (16.4%), 4-chloroaniline (14.4%) and 3,3'-dichlorobenzidine (4.37%) were recovered below the QC limits. As a result, the aniline, 4-chloroaniline and 3,3-dichlorobenzidine results for sample SS-07 were qualified as estimated (UJ).

6. Laboratory Control Sample (LCS) Results

The LCS sample (WG 140392-2) recovery for 4-chloroaniline (39%) was outside the QC limits (40-140%). As a result, 4-chloroaniline results in all samples were flagged as estimated (J or UJ) due to a possible low bias. All LCSD sample (WG 140392-3) recoveries were within the QC limits.

7. Field Duplicates

Samples SS-03 and SS-03-D were field duplicates. The field duplicate relative percent difference values (RPD) were acceptable.

8. Internal Standard Area Check

The internal standard area count for perylene-d12 for sample SS-07 was below the QC limits. As a result, the di-n-octylphthalate, benzo(b)fluroanthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene results in sample SS-07 were flagged as estimated (J or UJ).

9. <u>Initial Calibration</u>

For the initial calibration on SVOC instrument GCMSU on 3/17/2014 at 1221 hours, 2chloronaphthalene failed the % RSD criteria. The 2-chloronaphthalene results in all samples were flagged as estimated (J or UJ).

10. Continuing Calibration

The continuing calibration from 3/27/2014 at 1149 hours showed 4-nitrophenol with a %D (22.56%D) outside the QC limits (20%D). The 4-nitrophenol result in all samples except SS-05 were flagged as estimated (J or UJ).

The continuing calibration from 3/31/2014 at 1150 hours showed 4-nitrophenol (30.08%), indeno(1,2,3-cd)pyrene (22.55%), dibenzo(a,h)anthracene (20.02%) and benzo(g,h,i)perylene (20.55%) with %D values outside the QC limits. The 4-nitrophenol, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene results in sample SS-05 were flagged as estimated (J or UJ).

11. Overall Assessment

The SVOC data are acceptable for use with the listed qualifications.

EXPLOSIVES by EPA SW-846 METHOD 8330

1. <u>Samples</u>

The following table summarizes the sample for which this data validation was conducted.

Samples	Lab ID	Matrix	Date	Date	Date
			Collected	Prepared	Analyzed
SS-01	SH 1786-1	Soil	3/20/2014	3/25/2014	3/27/2014
SS-02	SH 1786-2	Soil	3/20/2014	3/25/2014	3/27/2014
SS-03	SH 1786-3	Soil	3/20/2014	3/25/2014	3/27/2014
SS-04	SH 1786-4	Soil	3/20/2014	3/25/2014	3/27/2014
SS-05	SH 1786-5	Soil	3/20/2014	3/25/2014	3/27/2014
SS-06	SH 1786-6	Soil	3/20/2014	3/25/2014	3/27/2014
SS-07	SH 1786-7	Soil	3/20/2014	3/25/2014	3/27/2014
SS-08	SH 1786-8	Soil	3/20/2014	3/25/2014	3/27/2014
SS-03-D	SH 1786-9	Soil	3/20/2014	3/25/2014	3/27/2014

2. <u>Holding Times</u>

The samples were extracted and analyzed within the required holding time limit. Samples were received in two coolers at 1.1°C and 0.8°C. This is outside the required receipt temperature of $4^{\circ}C \pm 2^{\circ}C$, but since the samples were not frozen, no action was taken.

3. <u>Blanks</u>

The method blank (WG 140401-1) associated with all samples were free of contamination.

4. <u>Surrogates</u>

The surrogate spike recovery of 1,2-dinitrobenzene was within the QC limits for all samples.

5. Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Results

KAS analyzed an MS and MSD using sample SS-07 as the spiked sample. The following explosives compounds were recovered above the laboratory QC limits. No action was taken because these compounds were not detected in sample SS-07.

Explosives compounds	
HMX – MS (110%); MSD (110%)	
1,3,5-trimethyl benzene - MS (115%); MSD (1169	%)
1,3-dinitrobenzene – MS (115%); MSD (116%)	
2,4,6-trinitrotoluene – MS (116%); MSD (116%)	
4-Am-DNT- MS (119%); MSD (120%)	
2,4-dinitrotoluene – MS (113%); MSD (114%)	
2-nitrotoluene – MS (111%); MSD (110%)	
4-nitrotoluene – MS (11%); MSD (110%)	
3-nitrotoluene – MS (111%); MSD (112%)	

The MS/MSD RPD values for all explosives compounds were within the laboratory QC limits.

6. Laboratory Control Sample (LCS) Results

The explosives LCS sample (WG 140401-2) was recovered above the QC limits (116%) for 4-Am-DNT. No action was taken for 4-Am-DNT as this explosive was not detected in any of the samples.

7. Field Duplicates

Samples SS-03 and SS-03-D were field duplicate samples. All field duplicate RPD values were acceptable.

8. <u>Initial Calibration</u>

The initial calibration for instrument # HPLC02 from 2/13/2014 at 1047 hours showed acceptable %RSD values for all explosives compounds.

9. <u>Continuing Calibration</u>

The continuing calibrations for instrument # HPLC02 associated with these samples showed acceptable %D values.

10. Overall Assessment

The explosive data are acceptable for use with the listed qualifications.

TOTAL METALS by EPA SW-846 METHOD 6010C ZIRCONIUM by EPA SW-846 METHOD 6010C

1. <u>Samples</u>

The following table summarizes the sample for which this data validation was conducted.

Samples	Lab ID	Matrix	Date	Date	Date Analyzed
			Collected	Prepared	
SS-01	SH 1786-1	Soil	3/20/2014	3/26/2014	3/27; 3/31/2014
SS-02	SH 1786-2	Soil	3/20/2014	3/26/2014	3/27; 3/31/2014
SS-03	SH 1786-3	Soil	3/20/2014	3/26/2014	3/27; 3/31/2014
SS-04	SH 1786-4	Soil	3/20/2014	3/26/2014	3/27; 3/31/2014
SS-05	SH 1786-5	Soil	3/20/2014	3/26/2014	3/27; 3/31/2014
SS-06	SH 1786-6	Soil	3/20/2014	3/26/2014	3/27; 3/31/2014
SS-07	SH 1786-7	Soil	3/20/2014	3/26/2014	3/27; 3/31/2014
SS-08	SH 1786-8	Soil	3/20/2014	3/26/2014	3/27; 3/31/2014
SS-03-D	SH 1786-9	Soil	3/20/2014	3/26/2014	3/27; 3/31/2014

2. <u>Holding Times</u>

The samples were prepared and analyzed within the required holding time limit. Samples were received in two coolers at 1.1°C and 0.8°C. This is outside the required receipt temperature of $4^{\circ}C \pm 2^{\circ}C$, but since the samples were not frozen, no action was taken.

3. <u>Initial and Continuing Calibration Verification</u>

All initial and continuing calibration verification check results associated with these samples were acceptable.

4. <u>Blanks</u>

The initial and continuing calibration blanks associated with these samples contained trace levels of molybdenum, copper, iron, selenium and thallium. No action was taken because these metals were detected in the associated samples at concentrations greater than ten times the amount of the metals in the initial and continuing calibration blanks.

The preparation blank associated with these samples contained aluminum, arsenic, copper, iron, magnesium, and thallium. Arsenic results in all samples except SS-05 and SS-06 were flagged as not detected (U) due to preparation blank contamination. The thallium result in sample SS-02 was flagged as not detected (U) due to preparation blank contamination. All other associated samples were not affected because the concentrations of the metals in the samples were greater than ten times the amount in the preparation blank.

5. <u>Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Results</u>

KAS analyzed an MS and MSD using sample SS-07 as the spiked sample. The antimony (56.9%, 56.7%), chromium (57.5%, 55.6%), magnesium (41.2%, 33.9%) and manganese (72.7%, 72.2%) MS and MSD recoveries were below the QC limits. Antimony, chromium, magnesium, and manganese results in all samples were flagged as estimated (J or UJ).

5. Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LSCD)

All metals LCS and LCSD recoveries were within the QC limits.

6. <u>Field Duplicates</u>

Samples SS-03 and SS-03-D were field duplicates. All total metals field duplicate results were acceptable.

7. Overall Assessment

The total metals data are acceptable for use with the listed qualifications. The zirconium data are acceptable for use without qualification.

TOTAL MERCURY by EPA SW-846 METHOD 7471B TOTAL CYANIDE by EPA SW-846 METHOD 9012B

1. <u>Samples</u>

The following table summarizes the sample for which this data validation was conducted.

Samples	Lab ID	Matrix	Date	Date	Date Analyzed
			Collected	Prepared	
SS-01	SH 1786-1	Soil	3/20/2014	3/26/2014	3/27; 3/26/2014
SS-02	SH 1786-2	Soil	3/20/2014	3/26/2014	3/27; 3/26/2014

Samples	Lab ID	Matrix	Date	Date	Date Analyzed
			Collected	Prepared	
SS-03	SH 1786-3	Soil	3/20/2014	3/26/2014	3/27; 3/26/2014
SS-04	SH 1786-4	Soil	3/20/2014	3/26/2014	3/27; 3/26/2014
SS-05	SH 1786-5	Soil	3/20/2014	3/26/2014	3/27; 3/26/2014
SS-06	SH 1786-6	Soil	3/20/2014	3/26/2014	3/27; 3/26/2014
SS-07	SH 1786-7	Soil	3/20/2014	3/26/2014	3/27; 3/26/2014
SS-08	SH 1786-8	Soil	3/20/2014	3/26/2014	3/27; 3/26/2014
SS-03-D	SH 1786-9	Soil	3/20/2014	3/26/2014	3/27; 3/26/2014

2. <u>Holding Times</u>

The samples were prepared and analyzed within the required holding time limit. Samples were received in two coolers at 1.1°C and 0.8°C. This is outside the required receipt temperature of $4^{\circ}C \pm 2^{\circ}C$, but since the samples were not frozen, no action was taken.

3. <u>Blanks</u>

The initial and continuing calibration blanks for mercury were free of contamination. The method blank for cyanide did not contain detectable levels of cyanide.

4. <u>Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Results</u>

KAS analyzed an MS and MSD for mercury using sample SS-07 as the spiked sample. The mercury MS and MSD recoveries were within the QC limits (75-125%). The mercury MS/MSD RPD value was acceptable.

KAS analyzed an MS and MSD for cyanide using sample SS-07 as the spiked sample. All MS and MSD recoveries were within the laboratory QC limits. The cyanide MS/MSD RPD value was acceptable

5. Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) Results

All mercury and cyanide LCS and LCSD recoveries were within the QC limits. The mercury and cyanide LCS/LCSD RPD values were acceptable.

6. Field Duplicates

Samples SS-03 and SS-03-D were field duplicates. The mercury and cyanide RPD values were within the QC limits.

7. Overall Assessment

The mercury and cyanide in soil data are acceptable for use with no qualifications.

TOTAL KJELDAHL NITROGEN (TKN) by EPA METHOD 351.2

1. <u>Samples</u>

The following table summarizes the sample for which this data validation was conducted.

Samples	Lab ID	Matrix	Date	Date	Date Analyzed
			Collected	Prepared	
SS-01	SH 1786-1	Soil	3/20/2014	3/26/2014	3/26/2014
SS-02	SH 1786-2	Soil	3/20/2014	3/26/2014	3/26/2014
SS-03	SH 1786-3	Soil	3/20/2014	3/26/2014	3/26/2014
SS-04	SH 1786-4	Soil	3/20/2014	3/26/2014	3/26/2014
SS-05	SH 1786-5	Soil	3/20/2014	3/26/2014	3/26/2014
SS-06	SH 1786-6	Soil	3/20/2014	3/26/2014	3/26/2014
SS-07	SH 1786-7	Soil	3/20/2014	3/26/2014	3/26/2014
SS-08	SH 1786-8	Soil	3/20/2014	3/26/2014	3/26/2014
SS-03-D	SH 1786-9	Soil	3/20/2014	3/26/2014	3/27/2014

2. Holding Times

The samples were prepared and analyzed within the required holding time limit. Samples were received in two coolers at 1.1°C and 0.8°C. This is outside the required receipt temperature of $4^{\circ}C \pm 2^{\circ}C$, but since the samples were not frozen, no action was taken.

3. Blanks

The method blanks associated with the TKN analyses did not contain detectable levels of TKN.

4. Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Results

KAS analyzed an MS and MSD for TKN using sample SS-07 as the spiked sample. The TKN MS and MSD recoveries were within the QC limits (75-125%). The TKN MS/MSD RPD value was acceptable.

5. Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) Results

All mercury and cyanide LCS and LCSD recoveries were within the QC limits. The mercury and cyanide LCS/LCSD RPD values were acceptable.

6. <u>Field Duplicates</u>

Samples SS-03 and SS-03-D were field duplicates. The TKN RPD value was within the QC limits.

7. **Overall Assessment**

The TKN in soil data are acceptable for use with no qualifications.

PICRIC ACID by EPA SW-846 METHOD 8330M

1. <u>Samples</u>

The following table summarizes the sample for which this data validation was conducted.

Samples	Lab ID	Matrix	Date	Date	Date
			Collected	Prepared	Analyzed
SS-01	K1402957-1	Soil	3/20/2014	3/29/2014	3/30/2014
SS-02	K1402957-2	Soil	3/20/2014	3/29/2014	3/30/2014
SS-03	K1402957-3	Soil	3/20/2014	3/29/2014	3/30/2014
SS-04	K1402957-4	Soil	3/20/2014	3/29/2014	3/30/2014
SS-05	K1402957-5	Soil	3/20/2014	3/29/2014	3/30/2014
SS-06	K1402957-6	Soil	3/20/2014	3/29/2014	3/30/2014
SS-07	K1402957-7	Soil	3/20/2014	3/29/2014	3/30/2014
SS-08	K1402957-8	Soil	3/20/2014	3/29/2014	3/30/2014
SS-03-D	K1402957-9	Soil	3/20/2014	3/29/2014	3/30/2014

2. Holding Times

The samples were extracted and analyzed within the required holding time limit. Samples were trans-shipped from KAS and received by ALS 4°C within the required receipt temperature of $4^{\circ}C \pm 2^{\circ}C$.

3. Blanks

The method blank (KWG 1402657-8) associated with all samples did not contain detectable levels of picric acid.

4. <u>Surrogates</u>

The surrogate spike recovery of 2,6-dinitro-4-methyl phenol was within the QC limits for all samples.

5. Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Results

ALS analyzed an MS and MSD using sample SS-07 as the spiked sample. The picric acid MS and MSD recoveries were within the QC limits (70-130%). The MS/MSD RPD value was within the laboratory QC limits (40% RPD).

6. Laboratory Control Sample (LCS) Results

The LCS for picric acid was recovered within the QC limits (70-130%).

7. Field Duplicates

Samples SS-03 and SS-03-D were field duplicate samples. The picric acid field duplicate RPD value was acceptable.

8. <u>Initial Calibration</u>

The initial calibration showed acceptable %RSD values for picric acid.

9. <u>Continuing Calibration</u>

The continuing calibrations associated with these samples showed acceptable %D values.

10. Overall Assessment

The picric acid data are acceptable for use without qualification.

PERCHLORATES by EPA SW-846 METHOD 6850

1. Samples

The following table summarizes the sample for which this data validation was conducted.

Samples	Lab ID	Matrix	Date	Date	Date
			Collected	Prepared	Analyzed
SS-01	L14031356-1	Soil	3/20/2014	3/29/2014	3/30/2014
SS-02	L14031356-2	Soil	3/20/2014	3/29/2014	3/30/2014
SS-03	L14031356-3	Soil	3/20/2014	3/29/2014	3/30/2014
SS-04	L14031356-4	Soil	3/20/2014	3/29/2014	3/30/2014
SS-05	L14031356-5	Soil	3/20/2014	3/29/2014	3/30/2014
SS-06	L14031356-6	Soil	3/20/2014	3/29/2014	3/30/2014
SS-07	L14031356-7	Soil	3/20/2014	3/29/2014	3/30/2014
SS-08	L14031356-8	Soil	3/20/2014	3/29/2014	3/30/2014
SS-03-D	L14031356-9	Soil	3/20/2014	3/29/2014	3/30/2014

2. <u>Holding Times</u>

The samples were extracted and analyzed within the required holding time limit. Samples were trans-shipped from KAS and received by MICRO at 0°C. This temperature is outside the required receipt temperature of $4^{\circ}C \pm 2^{\circ}C$ but no action was taken because the samples were not frozen.

3. <u>Blanks</u>

The method blank (WG468631-02) associated with all samples did not contain detectable levels of perchlorate.

4. Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Results

MICRO analyzed an MS and MSD using sample SS-07 as the spiked sample. The perchlorate MS and MSD recoveries were within the QC limits (80-120%). The MS/MSD RPD value was within the laboratory QC limits (15% RPD).

5. Laboratory Control Sample (LCS) Results

The LCS for perchlorate was recovered within the QC limits (80-120%).

6. Field Duplicates

Samples SS-03 and SS-03-D were field duplicate samples. The perchlorate field duplicate RPD value was acceptable.

7. <u>Initial Calibration</u>

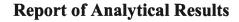
The initial calibration showed acceptable results for perchlorate.

8. <u>Continuing Calibration</u>

The continuing calibrations associated with these samples showed acceptable %D values.

9. Overall Assessment

The perchlorate data are acceptable for use without qualification.


> ATTACHMENT KATAHDIN ANALYTICAL SERVICES ALS ENVIRONMENTAL MICROBAC LABORATORIES RESULTS SUMMARY

_

_

Client: Weston Solutions, Inc. Lab ID: SH1786-1 Client ID: SS-01 **Project:** Nantucket Memorial Airport **SDG: SH1786** Lab File ID: U4999.D

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392

Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 83. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aniline	U	980	ug/Kgdryw	t 1	820	980	110	730
Phenol	U	390	ug/Kgdryw	t 1	330	390	190	300
Bis(2-Chloroethyl)Ether	U	390	ug/Kgdryw	t 1	330	390	97.	300
2-Chlorophenol	U	390	ug/Kgdryw	t 1	330	390	200	300
1,3-Dichlorobenzene	U	390	ug/Kgdryw	t 1	330	390	93.	300
1,4-Dichlorobenzene	U	390	ug/Kgdryw	t 1	330	390	100	300
1,2-Dichlorobenzene	U	390	ug/Kgdryw	t 1	330	390	100	300
2-Methylphenol	U	390	ug/Kgdryw	t 1	330	390	240	300
2,2'-Oxybis(1-Chloropropane)	U	390	ug/Kgdryw	t 1	330	390	110	300
3&4-Methylphenol	U	390	ug/Kgdryw	t 1	330	390	220	300
Hexachloroethane	U	390	ug/Kgdryw	t 1	330	390	110	300
Nitrobenzene	U	390	ug/Kgdryw	t 1	330	390	110	300
Isophorone	U	390	ug/Kgdryw	t 1	330	390	90.	300
2-Nitrophenol	U	390	ug/Kgdryw	t 1	330	390	200	300
2,4-Dimethylphenol	U	390	ug/Kgdrywi	t 1	330	390	200	300
Bis(2-Chloroethoxy)Methane	U	390	ug/Kgdryw	t 1	330	390	110	300
2,4-Dichlorophenol	U	390	ug/Kgdrywt	t 1	330	390	180	300
1,2,4-Trichlorobenzene	U	390	ug/Kgdrywt	t 1	330	390	97.	300
Naphthalene	U	390	ug/Kgdrywt	t 1	330	390	100	300
4-Chloroaniline	U 🔰	390	ug/Kgdrywt	t 1	330	390	140	300
Hexachlorobutadiene	U	390	ug/Kgdryw	t 1	330	390	99.	300
2-Methylnaphthalene	U	390	ug/Kgdryw	t 1	330	390	110	300
2,4,6-Trichlorophenol	U	390	ug/Kgdrywt	t 1	330	390	180	300
2,4,5-Trichlorophenol	U	980	ug/Kgdrywi	t 1	820	980	180	730
2-Chloronaphthalene	υ ΄	390	ug/Kgdrywi		330	390	100	300
Dimethyl Phthalate	U	390	ug/Kgdrywi	t 1	330	390	93.	300
Acenaphthylene	U	390	ug/Kgdrywt	t 1	330	390	84.	300
2,6-Dinitrotoluene	U	390	ug/Kgdrywt	t 1	330	390	94.	300
Acenaphthene	U	390	ug/Kgdrywt	t 1	330	390	78.	300
2,4-Dinitrophenol	U	980	ug/Kgdrywt	t 1	820	980	450	730
4-Nitrophenol	υ <mark></mark> Σ	980	ug/Kgdrywt	t 1	820	980	370	730
Dibenzofuran	U	390	ug/Kgdrywt	t 1	330	390	94.	300
2,4-Dinitrotoluene	U	390	ug/Kgdrywt		330	390	100	300
Diethylphthalate	U	390	ug/Kgdrywt		330	390	96.	300
Fluorene	U	390	ug/Kgdrywt	t 1	330	390	97.	300
]	Page 1	of 2					

600 Technology Way

P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

Client: Weston Solutions, Inc. Lab ID: SH1786-1 Client ID: SS-01 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: U4999.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392 Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 83. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
4-Bromophenyl-Phenylether	U	390	ug/Kgdrywt	: 1	330	390	100	300
Hexachlorobenzene	U	390	ug/Kgdrywt	: 1	330	390	98.	300
Pentachlorophenol	U	980	ug/Kgdrywt	1	820	980	280	730
Phenanthrene	U	390	ug/Kgdrywt	: 1	330	390	99.	300
Anthracene	U	390	ug/Kgdrywt	: 1	330	390	100	300
Di-N-Butylphthalate	J	380	ug/Kgdrywt	: 1	330	390	120	300
Fluoranthene	U	390	ug/Kgdrywt	: 1	330	390	130	300
Pyrene	U	390	ug/Kgdrywt	1	330	390	120	300
Butylbenzylphthalate	U	390	ug/Kgdrywt	: 1	330	390	110	300
3,3'-Dichlorobenzidine	U	390	ug/Kgdrywt	1	330	390	140	300
Benzo(a)anthracene	U	390	ug/Kgdrywt	1	330	390	100	300
Chrysene	U	390	ug/Kgdrywt	1	330	390	110	300
Bis(2-Ethylhexyl)Phthalate	U	390	ug/Kgdrywt	1	330	390	120	300
Di-N-Octylphthalate	U	390	ug/Kgdrywt	1	330	390	250	300
Benzo(b)fluoranthene	U	390	ug/Kgdrywt	1	330	390	160	300
Benzo(k)fluoranthene	U	390	ug/Kgdrywt	1	330	390	99 .	300
Benzo(a)pyrene	U	390	ug/Kgdrywt	1	330	390	110	300
Indeno(1,2,3-cd)pyrene	U	390	ug/Kgdrywt	: 1	330	390	140	300
Dibenzo(a,h)anthracene	U	390	ug/Kgdrywt	1	330	390	150	300
Benzo(g,h,i)perylene	U	390	ug/Kgdrywt	: 1	330	390	120	300
Acetophenone	U	390	ug/Kgdrywt	: 1	330	390	210	300
Azobenzene	U	790	ug/Kgdrywt	: 1	660	790	160	590
2-Fluorophenol		60.3						
Phenol-D6		69.6						
Nitrobenzene-d5		69.3						
2-Fluorobiphenyl		77.9						
2,4,6-Tribromophenol		84.4						
Terphenyl-d14		100.						

Page 2 of 2

410/14

Tentatively Identified Compounds

Lab ID:SH1786-1	Sample Date: 20-MAR-14	Analysis Date: 27-MAR-14
Client ID: SS-01	Received Date: 21-MAR-14	Analyst: JCG
Project: Nantucket Memorial Airport	Extract Date: 25-MAR-14	Analysis Method: SW846 8270C
SDG: SH1786	Extracted By: AM	Matrix: SL
Lab File ID: U4999.D	Extraction Method: SW846 3540	% Solids: 83.
Units: ug/Kgdrwt	Lab Prep Batch: WG140392	Report Date: 01-APR-14

CAS Number	Compound Name	RT	Est. Concentration	Qualifier
	Unknown	16.721	198	J
4707-47-5	Benzoic acid, 2,4-dihydroxy-3,6-dimethy	18.108	244	J
5155-70-4	1-Phenanthrenecarboxylic acid, 1,2,3,4,	25.043	379	J
7390-81-0	Oxirane, hexadecyl-	26.533	318	J
1599-67-3	1-Docosene	26.999	982	J
	Unknown	28.003	372	J
	Unknown	31.087	461	J
	Unknown	31.232	695	J
	Unknown	31.76	745	J

Page 1 of 1

Jet yudiy

Client: Weston Solutions, Inc. Lab ID: SH1786-2 Client ID: SS-02 Project: Nantucket Memorial Airport **SDG:** SH1786 Lab File ID: U5000.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By: AM **Extraction Method:** SW846 3540 Lab Prep Batch: WG140392

Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 82. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aniline	U	950	ug/Kgdryw	t 1	820	950	100	710
Phenol	U	380	ug/Kgdryw	t 1	330	380	180	290
Bis(2-Chloroethyl)Ether	U	380	ug/Kgdryw	t 1	330	380	94.	290
2-Chlorophenol	U	380	ug/Kgdryw	t 1	330	380	190	290
1,3-Dichlorobenzene	U	380	ug/Kgdryw	t 1	330	380	90.	290
1,4-Dichlorobenzene	U	380	ug/Kgdryw	t 1	330	380	99.	290
1,2-Dichlorobenzene	U	380	ug/Kgdryw	t 1	330	380	100	290
2-Methylphenol	U	380	ug/Kgdryw	t 1	330	380	230	290
2,2'-Oxybis(1-Chloropropane)	U	380	ug/Kgdryw	t 1	330	380	100	290
3&4-Methylphenol	U	380	ug/Kgdryw	t 1	330	380	220	290
Hexachloroethane	U	380	ug/Kgdryw	t 1	330	380	110	290
Nitrobenzene	U	380	ug/Kgdryw	t 1	330	380	100	290
Isophorone	U	380	ug/Kgdryw	t 1	330	380	87.	290
2-Nitrophenol	U	380	ug/Kgdryw	t 1	330	380	190	290
2,4-Dimethylphenol	U	380	ug/Kgdryw	t 1	330	380	190	290
Bis(2-Chloroethoxy)Methane	U	380	ug/Kgdryw	t 1	330	380	110	290
2,4-Dichlorophenol	U	380	ug/Kgdryw	t 1	330	380	170	290
1,2,4-Trichlorobenzene	U	380	ug/Kgdryw	t 1	330	380	94.	290
Naphthalene	U	380	ug/Kgdryw	t 1	330	380	100	290
4-Chloroaniline	U 🗹	380	ug/Kgdryw	t 1	330	380	140	290
Hexachlorobutadiene	U	380	ug/Kgdryw	t 1	330	380	96.	290
2-Methylnaphthalene	U	380	ug/Kgdryw	t 1	330	380	110	290
2,4,6-Trichlorophenol	U	380	ug/Kgdryw	t 1	330	380	180	290
2,4,5-Trichlorophenol	U	950	ug/Kgdryw	t 1	820	950	180	710
2-Chloronaphthalene	U <mark>ঠ</mark>	380	ug/Kgdryw	t 1	330	380	100	290
Dimethyl Phthalate	U	380	ug/Kgdryw	t 1	330	380	90.	290
Acenaphthylene	U	380	ug/Kgdryw	t 1	330	380	81.	290
2,6-Dinitrotoluene	U	380	ug/Kgdryw	t 1	330	380	91.	290
Acenaphthene	U	380	ug/Kgdryw	t 1	330	380	75.	290
2,4-Dinitrophenol	U	950	ug/Kgdryw	t 1	820	950	440	710
4-Nitrophenol	U 🕇	950	ug/Kgdryw	t 1	820	950	360	710
Dibenzofuran	U	380	ug/Kgdryw	t 1	330	380	91.	290
2,4-Dinitrotoluene	U	380	ug/Kgdryw	t 1	330	380	98.	290
Diethylphthalate	U	380	ug/Kgdryw	t 1	330	380	92.	290
Fluorene	U	380	ug/Kgdryw	t 1	330	380	94.	290

Page 1 of 2

Lab File ID: U5000.D

Client: Weston Solutions, Inc. Lab ID: SH1786-2 Client ID: SS-02 Project: Nantucket Memorial Airport SDG: SH1786

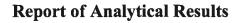
Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392 Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 82. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
4-Bromophenyl-Phenylether	U	380	ug/Kgdrywt	t 1	330	380	98.	290
Hexachlorobenzene	U	380	ug/Kgdrywt	t 1	330	380	95.	290
Pentachlorophenol	U	950	ug/Kgdrywt	t 1	820	950	270	710
Phenanthrene	U	380	ug/Kgdrywt	t 1	330	380	96.	290
Anthracene	U	380	ug/Kgdrywt	t 1	330	380	97.	290
Di-N-Butylphthalate		400	ug/Kgdrywt	t 1	330	380	120	290
Fluoranthene	U	380	ug/Kgdrywt	t 1	330	380	120	290
Pyrene	J	140	ug/Kgdrywt	t 1	330	380	120	290
Butylbenzylphthalate	U	380	ug/Kgdrywt	t 1	330	380	110	290
3,3'-Dichlorobenzidine	U	380	ug/Kgdrywt	t 1	330	380	130	290
Benzo(a)anthracene	U	380	ug/Kgdrywt	t 1	330	380	99.	290
Chrysene	U	380	ug/Kgdrywt	t 1	330	380	110	290
Bis(2-Ethylhexyl)Phthalate	U	380	ug/Kgdrywt	t 1	330	380	110	290
Di-N-Octylphthalate	U	380	ug/Kgdrywt	t 1	330	380	240	290
Benzo(b)fluoranthene	U	380	ug/Kgdrywt	t 1	330	380	150	290
Benzo(k)fluoranthene	U	380	ug/Kgdrywt	t 1	330	380	96.	290
Benzo(a)pyrene	U	380	ug/Kgdrywt	t 1	330	380	110	290
Indeno(1,2,3-cd)pyrene	U	380	ug/Kgdrywt	t 1	330	380	140	290
Dibenzo(a,h)anthracene	U	380	ug/Kgdrywt	t 1	330	380	150	290
Benzo(g,h,i)perylene	U	380	ug/Kgdrywt	t 1	330	380	120	290
Acetophenone	U	380	ug/Kgdrywt	t 1	330	380	200	290
Azobenzene	U	760	ug/Kgdrywt	t 1	660	760	160	570
2-Fluorophenol		57.4						
Phenol-D6		66.2						
Nitrobenzene-d5		67.2						
2-Fluorobiphenyl		74.5						
2,4,6-Tribromophenol		77.4						
Terphenyl-d14		97.9						

Page 2 of 2

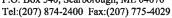
Tentatively Identified Compounds


Lab ID:SH1786-2	Sample Date: 20-MAR-14	Analysis Date: 27-MAR-14
Client ID: SS-02	Received Date: 21-MAR-14	Analyst: JCG
Project: Nantucket Memorial Airport	Extract Date: 25-MAR-14	Analysis Method: SW846 8270C
SDG: SH1786	Extracted By: AM	Matrix: SL
Lab File ID: U5000.D	Extraction Method: SW846 3540	% Solids: 82.
Units: ug/Kgdrwt	Lab Prep Batch: WG140392	Report Date: 01-APR-14

CAS Number	Compound Name		RT	Est. Concentration	Qualifier
4707-47-5	Benzoic acid, 2,4-dihydroxy-3,6-dimethy		18.108	180	J
	Unknown		24.236	227	J
1740-19-8	1-Phenanthrenecarboxylic acid, 1,2,3,4,		25.064	697	J
56554-86-0	17-Octadecenal		26.533	266	J
1000351-79	1-Octacosanol		26.999	1210	J
1000351-77	Heneicosyl acetate		27.806	1500	J
	Unknown Alkane	127	29.866	1120	J
	Unknown		31.243	728	J
	Unknown		31.76	1310	J

Page 1 of 1

Client: Weston Solutions, Inc. Lab ID: SH1786-3 Client ID: SS-03 **Project:** Nantucket Memorial Airport **SDG:** SH1786 Lab File ID: U5001.D


Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392

Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 87. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aniline	U	900	ug/Kgdryw	t 1	820	900	100	680
Phenol	U	360	ug/Kgdryw	t 1	330	360	170	270
Bis(2-Chloroethyl)Ether	U	360	ug/Kgdryw	t 1	330	360	89.	270
2-Chlorophenol	U	360	ug/Kgdryw	t 1	330	360	180	270
1,3-Dichlorobenzene	U	360	ug/Kgdryw	t 1	330	360	86.	270
1,4-Dichlorobenzene	U	360	ug/Kgdryw	t 1	330	360	95.	270
1,2-Dichlorobenzene	U	360	ug/Kgdryw	t 1	330	360	97.	270
2-Methylphenol	U	360	ug/Kgdryw	t 1	330	360	220	270
2,2'-Oxybis(1-Chloropropane)	U	360	ug/Kgdryw	t 1	330	360	98.	270
3&4-Methylphenol	U	360	ug/Kgdryw	t 1	330	360	210	270
Hexachloroethane	U	360	ug/Kgdryw	t 1	330	360	100	270
Nitrobenzene	U	360	ug/Kgdryw	t 1	330	360	100	270
Isophorone	U	360	ug/Kgdryw	t 1	330	360	83.	270
2-Nitrophenol	U	360	ug/Kgdryw	t 1	330	360	180	270
2,4-Dimethylphenol	U	360	ug/Kgdryw	t 1	330	360	180	270
Bis(2-Chloroethoxy)Methane	U	360	ug/Kgdryw	t 1	330	360	100	270
2,4-Dichlorophenol	U	360	ug/Kgdryw	t I	330	360	160	270
1,2,4-Trichlorobenzene	U	360	ug/Kgdryw	t 1	330	360	89.	270
Naphthalene	U	360	ug/Kgdryw	t 1	330	360	96.	270
4-Chloroaniline	υゴ	360	ug/Kgdryw	t 1	330	360	130	270
Hexachlorobutadiene	U	360	ug/Kgdryw	t 1	330	360	92.	270
2-Methylnaphthalene	U	360	ug/Kgdryw	t 1	330	360	100	270
2,4,6-Trichlorophenol	U	360	ug/Kgdryw	t 1	330	360	170	270
2,4,5-Trichlorophenol	U	900	ug/Kgdryw	t 1	820	900	170	680
2-Chloronaphthalene	υS	360	ug/Kgdryw	t 1	330	360	96.	270
Dimethyl Phthalate	U	360	ug/Kgdryw	t 1	330	360	86.	270
Acenaphthylene	U	360	ug/Kgdryw	t 1	330	360	77.	270
2,6-Dinitrotoluene	U	360	ug/Kgdryw	t 1	330	360	87.	270
Acenaphthene	U	360	ug/Kgdryw	t 1	330	360	72.	270
2,4-Dinitrophenol	U	900	ug/Kgdryw	t 1	820	900	420	680
4-Nitrophenol	U 🗲	900	ug/Kgdryw	t I	820	900	340	680
Dibenzofuran	U	360	ug/Kgdryw	t 1	330	360	87.	270
2,4-Dinitrotoluene	U	360	ug/Kgdryw	t 1	330	360	94.	270
Diethylphthalate	U	360	ug/Kgdryw	t 1	330	360	88.	270
Fluorene	U	360	ug/Kgdryw	t I	330	360	89.	270
		D 1	6 -					

Page 1 of 2

600 Technology Way P.O. Box 540, Scarborough, ME 04070

Client: Weston Solutions, Inc. Lab ID: SH1786-3 Client ID: SS-03 Project: Nantucket Memorial Airport **SDG:** SH1786 Lab File ID: U5001.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392

Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 87. Report Date: 01-APR-14

Cert No E87604

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
4-Bromophenyl-Phenylether	U	360	ug/Kgdryw	t 1	330	360	94.	270
Hexachlorobenzene	U	360	ug/Kgdryw	t 1	330	360	90.	270
Pentachlorophenol	U	900	ug/Kgdryw	t 1	820	900	260	680
Phenanthrene	U	360	ug/Kgdryw	t 1	330	360	92.	270
Anthracene	U	360	ug/Kgdryw	t 1	330	360	93.	270
Di-N-Butylphthalate	U	360	ug/Kgdryw	t 1	330	360	110	270
Fluoranthene	U	360	ug/Kgdryw	t 1	330	360	120	270
Pyrene	U	360	ug/Kgdryw	t 1	330	360	110	270
Butylbenzylphthalate	U	360	ug/Kgdrywt	t 1	330	360	100	270
3,3'-Dichlorobenzidine	U	360	ug/Kgdrywt	t 1	330	360	120	270
Benzo(a)anthracene	U	360	ug/Kgdrywt	t 1	330	360	95.	270
Chrysene	U	360	ug/Kgdrywt	t 1	330	360	100	270
Bis(2-Ethylhexyl)Phthalate	U	360	ug/Kgdrywt	t 1	330	360	110	270
Di-N-Octylphthalate	U	360	ug/Kgdrywt	t 1	330	360	230	270
Benzo(b)fluoranthene	U	360	ug/Kgdrywt	: 1	330	360	150	270
Benzo(k)fluoranthene	U	360	ug/Kgdrywt	t 1	330	360	92.	270
Benzo(a)pyrene	U	360	ug/Kgdrywt	: 1	330	360	100	270
Indeno(1,2,3-cd)pyrene	U	360	ug/Kgdrywt	t 1	330	360	130	270
Dibenzo(a,h)anthracene	U	360	ug/Kgdrywt	: 1	330	360	140	270
Benzo(g,h,i)perylene	U	360	ug/Kgdrywt	: 1	330	360	110	270
Acetophenone	U	360	ug/Kgdrywt	: 1	330	360	200	270
Azobenzene	U	730	ug/Kgdrywt	: 1	660	730	150	540
2-Fluorophenol		56.0						
Phenol-D6		64.9						
Nitrobenzene-d5		62.5						
2-Fluorobiphenyl		70.1						
2,4,6-Tribromophenol		83.4						
Terphenyl-d14		90.2						

Page 2 of 2

Tentatively Identified Compounds

Lab ID:SH1786-3	Sample Date: 20-MAR-14	Analysis Date: 27-MAR-14
Client ID: SS-03	Received Date: 21-MAR-14	Analyst: JCG
Project: Nantucket Memorial Airport	Extract Date: 25-MAR-14	Analysis Method: SW846 8270C
SDG: SH1786	Extracted By:AM	Matrix: SL
Lab File ID: U5001.D	Extraction Method: SW846 3540	% Solids: 87.
Units: ug/Kgdrwt	Lab Prep Batch: WG140392	Report Date: 01-APR-14

CAS Number	Compound Name	RT	Est. Concentration	Qualifier
4707-47-5	Benzoic acid, 2,4-dihydroxy-3,6-dimethy	18.108	260	J
	C20H32 Isomer	20.292	160	J
3564-54-3	17-Norkaur-15-ene, 13-methyl-, (8.beta.	20.695	414	J
21964-49-8	1,13-Tetradecadiene	22.827	163	J
1235-74-1	1-Phenanthrenecarboxylic acid, 1,2,3,4,	24.235	262	J
1740-19-8	1-Phenanthrenecarboxylic acid, 1,2,3,4,	25.063	609	J
	Unknown	29.658	167	J
	Unknown	31.087	351	J
	Unknown	31.232	576	J
	Unknown	31.76	924	J

Page 1 of 1

Hulle Hully

Client: Weston Solutions, Inc. Lab ID: SH1786-4 Client ID: SS-04 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: U5002.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392 Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 81. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aniline	U	1000	ug/Kgdryw	t 1	820	1000	110	750
Phenol	U	400	ug/Kgdryw	t 1	330	400	190	300
Bis(2-Chloroethyl)Ether	U	400	ug/Kgdrywt	t 1	330	400	99.	300
2-Chlorophenol	U	400	ug/Kgdryw	t 1	330	400	200	300
1,3-Dichlorobenzene	U	400	ug/Kgdrywt	t 1	330	400	95.	300
1,4-Dichlorobenzene	U	400	ug/Kgdrywt	t 1	330	400	100	300
1,2-Dichlorobenzene	U	400	ug/Kgdrywt	t 1	330	400	110	300
2-Methylphenol	U	400	ug/Kgdrywt	t 1	330	400	240	300
2,2'-Oxybis(1-Chloropropane)	U	400	ug/Kgdrywt	t 1	330	400	110	300
3&4-Methylphenol	U	400	ug/Kgdrywt	t 1	330	400	230	300
Hexachloroethane	U	400	ug/Kgdrywt	t 1	330	400	120	300
Nitrobenzene	U	400	ug/Kgdrywt	t 1	330	400	110	300
Isophorone	U	400	ug/Kgdrywt	t 1	330	400	91.	300
2-Nitrophenol	U	400	ug/Kgdrywt	t 1	330	400	200	300
2,4-Dimethylphenol	U	400	ug/Kgdrywt	t 1	330	400	200	300
Bis(2-Chloroethoxy)Methane	U	400	ug/Kgdrywt	t 1	330	400	120	300
2,4-Dichlorophenol	U	400	ug/Kgdrywt	t 1	330	400	180	300
1,2,4-Trichlorobenzene	U	400	ug/Kgdrywt	t 1	330	400	99 .	300
Naphthalene	U	400	ug/Kgdrywt	t 1	330	400	110	300
4-Chloroaniline	U	400	ug/Kgdrywt	t 1	330	400	140	300
Hexachlorobutadiene	U	400	ug/Kgdrywt	t 1	330	400	100	300
2-Methylnaphthalene	U	400	ug/Kgdrywt	t 1	330	400	110	300
2,4,6-Trichlorophenol	U	400	ug/Kgdrywt	t 1	330	400	190	300
2,4,5-Trichlorophenol	U	1000	ug/Kgdrywt	t 1	820	1000	190	750
2-Chloronaphthalene	U 🛪	400	ug/Kgdrywt	t 1	330	400	110	300
Dimethyl Phthalate	U	400	ug/Kgdrywt	t 1	330	400	95.	300
Acenaphthylene	U	400	ug/Kgdrywt	t 1	330	400	85.	300
2,6-Dinitrotoluene	U	400	ug/Kgdrywt	t 1	330	400	96.	300
Acenaphthene	U	400	ug/Kgdrywt	t 1	330	400	79 .	300
2,4-Dinitrophenol	U	1000	ug/Kgdrywt	t 1	820	1000	460	750
4-Nitrophenol	U 🗸	1000	ug/Kgdrywt	t 1	820	1000	380	750
Dibenzofuran	U	400	ug/Kgdrywt	t 1	330	400	96.	300
2,4-Dinitrotoluene	U	400	ug/Kgdrywt	t 1	330	400	100	300
Diethylphthalate	U	400	ug/Kgdrywt	t 1	330	400	98.	300
Fluorene	U	400	ug/Kgdrywt	t 1	330	400	99.	300
		Page 1	of 2					

600 Technology Way P.O. Box 540, Scarborough, ME 04070

Tel:(207) 874-2400 Fax:(207) 775-4029

Client: Weston Solutions, Inc. Lab ID: SH1786-4 Client ID: SS-04 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: U5002.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392 Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 81. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
4-Bromophenyl-Phenylether	U	400	ug/Kgdryw	t 1	330	400	100	300
Hexachlorobenzene	U	400	ug/Kgdryw	t 1	330	400	100	300
Pentachlorophenol	U	1000	ug/Kgdryw	t 1	820	1000	290	750
Phenanthrene	U	400	ug/Kgdryw	t 1	330	400	100	300
Anthracene	U	400	ug/Kgdrywt	t 1	330	400	100	300
Di-N-Butylphthalate		1600	ug/Kgdrywt	t 1	330	400	120	300
Fluoranthene	U	400	ug/Kgdrywt	t 1	330	400	130	300
Pyrene	U	400	ug/Kgdrywt	t 1	330	400	120	300
Butylbenzylphthalate	U	400	ug/Kgdrywt	t 1	330	400	110	300
3,3'-Dichlorobenzidine	U	400	ug/Kgdrywt	t 1	330	400	140	300
Benzo(a)anthracene	U	400	ug/Kgdrywt	t 1	330	400	100	300
Chrysene	U	400	ug/Kgdrywt	t 1	330	400	120	300
Bis(2-Ethylhexyl)Phthalate	U	400	ug/Kgdrywt	t 1	330	400	120	300
Di-N-Octylphthalate	U	400	ug/Kgdrywt	t 1	330	400	260	300
Benzo(b)fluoranthene	U	400	ug/Kgdrywt	t 1	330	400	160	300
Benzo(k)fluoranthene	U	400	ug/Kgdrywt	t 1	330	400	100	300
Benzo(a)pyrene	U	400	ug/Kgdrywt	t 1	330	400	110	300
Indeno(1,2,3-cd)pyrene	U	400	ug/Kgdrywt	t 1	330	400	150	300
Dibenzo(a,h)anthracene	U	400	ug/Kgdrywt	t 1	330	400	160	300
Benzo(g,h,i)perylene	U	400	ug/Kgdrywt	t 1	330	400	130	300
Acetophenone	U	400	ug/Kgdrywt	t 1	330	400	220	300
Azobenzene	U	800	ug/Kgdrywt	t 1	660	800	170	600
2-Fluorophenol		57.4						
Phenol-D6		67.2						
Nitrobenzene-d5		66.0						
2-Fluorobiphenyl		73.4						
2,4,6-Tribromophenol		86.4						
Terphenyl-d14		105.						

Page 2 of 2

Hioliy

Tentatively Identified Compounds

Lab ID: SH1786-4	Sample Date: 20-MAR-14	Analysis Date: 27-MAR-14
Client ID: SS-04	Received Date: 21-MAR-14	Analyst: JCG
Project: Nantucket Memorial Airport	Extract Date: 25-MAR-14	Analysis Method: SW846 8270C
SDG: SH1786	Extracted By: AM	Matrix: SL
Lab File ID: U5002.D	Extraction Method: SW846 3540	% Solids: 81.
Units: ug/Kgdrwt	Lab Prep Batch: WG140392	Report Date: 01-APR-14

CAS Number	Compound Name	RT	Est. Concentration	Qualifier
4707-47-5	Benzoic acid, 2,4-dihydroxy-3,6-dimethy	18.108	213	J
57-11-4	Octadecanoic acid	22.631	340	J
1235-74-1	1-Phenanthrenecarboxylic acid, 1,2,3,4,	24.235	445	J
56554-86-0	17-Octadecenal	26.533	257	J
1000351-77	Heneicosyl acetate	27.795	732	J
	Unknown	28.002	534	J
	Unknown Alkane	29.865	871	J
	Unknown	31.231	677	J
	Unknown	31.759	763	J

Page 1 of 1

Le High

Client: Weston Solutions, Inc. Lab ID:SH1786-5RA Client ID: SS-05 Project: Nantucket Memorial Airport **SDG:** SH1786 Lab File ID: U5028.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 **Extracted By:**AM **Extraction Method:** SW846 3540 Lab Prep Batch: WG140392

Analysis Date: 31-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 81. Report Date: 01-APR-14

Cert No E8760

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aniline	U	970	ug/Kgdryw	t 1	820	970	110	730
Phenol	U	390	ug/Kgdryw	t 1	330	390	180	290
Bis(2-Chloroethyl)Ether	U	390	ug/Kgdryw	t 1	330	390	96.	290
2-Chlorophenol	U	390	ug/Kgdryw	t 1	330	390	190	290
1,3-Dichlorobenzene	U	390	ug/Kgdryw	t 1	330	390	92.	290
1,4-Dichlorobenzene	U	390	ug/Kgdryw	t 1	330	390	100	290
1,2-Dichlorobenzene	U	390	ug/Kgdryw	t 1	330	390	100	290
2-Methylphenol	U	390	ug/Kgdryw	t 1	330	390	240	290
2,2'-Oxybis(1-Chloropropane)	U	390	ug/Kgdryw	t 1	330	390	100	290
3&4-Methylphenol	U	390	ug/Kgdryw	t 1	330	390	220	290
Hexachloroethane	U	390	ug/Kgdryw	t 1	330	390	110	290
Nitrobenzene	U	390	ug/Kgdryw	t 1	330	390	110	290
Isophorone	U	390	ug/Kgdryw	t 1	330	390	89.	290
2-Nitrophenol	U	390	ug/Kgdryw	t 1	330	390	200	290
2,4-Dimethylphenol	U	390	ug/Kgdryw		330	390	200	290
Bis(2-Chloroethoxy)Methane	U	390	ug/Kgdryw		330	390	110	290
2,4-Dichlorophenol	U	390	ug/Kgdryw	t 1	330	390	180	290
1,2,4-Trichlorobenzene	U	390	ug/Kgdrywt		330	390	96.	290
Naphthalene	U	390	ug/Kgdrywt	t 1	330	390	100	290
4-Chloroaniline	U 爻	390	ug/Kgdrywt	t 1	330	390	140	290
Hexachlorobutadiene	U	390	ug/Kgdrywt	t 1	330	390	98.	290
2-Methylnaphthalene	U	390	ug/Kgdrywt	t 1	330	390	110	290
2,4,6-Trichlorophenol	U	390	ug/Kgdrywt	t 1	330	390	180	290
2,4,5-Trichlorophenol	U	970	ug/Kgdrywt	t 1	820	970	180	730
2-Chloronaphthalene	U 🖌	390	ug/Kgdrywt	: 1	330	390	100	290
Dimethyl Phthalate	U	390	ug/Kgdrywt	1	330	390	92.	290
Acenaphthylene	U	390	ug/Kgdrywt	t 1	330	390	83.	290
2,6-Dinitrotoluene	U	390	ug/Kgdrywt	t 1	330	390	93.	290
Acenaphthene	U	390	ug/Kgdrywt	: 1	330	390	77.	290
2,4-Dinitrophenol	U	970	ug/Kgdrywt	t 1	820	970	440	730
4-Nitrophenol	UJ	970	ug/Kgdrywt	t 1	820	970	360	730
Dibenzofuran	U	390	ug/Kgdrywt	t 1	330	390	93.	290
2,4-Dinitrotoluene	U	390	ug/Kgdrywt	t 1	330	390	100	290
Diethylphthalate	U	390	ug/Kgdrywt	t 1	330	390	94.	290
Fluorene	U	390	ug/Kgdrywt	: 1	330	390	96.	290

Page 1 of 2

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

Client: Weston Solutions, Inc. Lab ID:SH1786-5RA Client ID: SS-05 Project: Nantucket Memorial Airport **SDG:** SH1786 Lab File ID: U5028.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM **Extraction Method:** SW846 3540 Lab Prep Batch: WG140392

Analysis Date: 31-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 81. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
4-Bromophenyl-Phenylether	U	390	ug/Kgdrywi	t 1	330	390	100	290
Hexachlorobenzene	U	390	ug/Kgdrywt	t 1	330	390	97.	290
Pentachlorophenol	U	970	ug/Kgdrywt	t 1	820	970	280	730
Phenanthrene	U	390	ug/Kgdrywt	t 1	330	390	98.	290
Anthracene	U	390	ug/Kgdrywt	t 1	330	390	99.	290
Di-N-Butylphthalate	U	390	ug/Kgdrywt	t 1	330	390	120	290
Fluoranthene	U	390	ug/Kgdrywt	t 1	330	390	120	290
Pyrene	U	390	ug/Kgdrywt	t 1	330	390	120	290
Butylbenzylphthalate	U	390	ug/Kgdrywt	t 1	330	390	110	290
3,3'-Dichlorobenzidine	U	390	ug/Kgdrywt	t 1	330	390	130	290
Benzo(a)anthracene	U	390	ug/Kgdrywt	t 1	330	390	100	290
Chrysene	U	390	ug/Kgdrywt	t 1	330	390	110	290
Bis(2-Ethylhexyl)Phthalate	J	140	ug/Kgdrywt	t 1	330	390	120	290
Di-N-Octylphthalate	U	390	ug/Kgdrywt	t 1	330	390	250	290
Benzo(b)fluoranthene	U	390	ug/Kgdrywt	t 1	330	390	160	290
Benzo(k)fluoranthene	U	390	ug/Kgdrywt	t 1	330	390	98.	290
Benzo(a)pyrene	U	390	ug/Kgdrywt	t 1	330	390	110	290
Indeno(1,2,3-cd)pyrene	υ🏅	390	ug/Kgdrywt	t 1	330	390	140	290
Dibenzo(a,h)anthracene	U 🔨	390	ug/Kgdrywt	t 1	330	390	150	290
Benzo(g,h,i)perylene	υ <mark>ઝ</mark>	390	ug/Kgdrywt	t 1	330	390	120	290
Acetophenone	U	390	ug/Kgdrywt	t 1	330	390	210	290
Azobenzene	U	780	ug/Kgdrywt	t 1	660	780	160	580
2-Fluorophenol		59.4						
Phenol-D6		69.0						
Nitrobenzene-d5		67.0						
2-Fluorobiphenyl		74.6						
2,4,6-Tribromophenol		89.3						
Terphenyl-d14		89.8						

Page 2 of 2

Tentatively Identified Compounds

Lab ID:SH1786-5RA	Sample Date: 20-MAR-14	Analysis Date: 31-MAR-14
Client ID: SS-05	Received Date: 21-MAR-14	Analyst: JCG
Project: Nantucket Memorial Airport	Extract Date: 25-MAR-14	Analysis Method: SW846 8270C
SDG: SH1786	Extracted By:AM	Matrix: SL
Lab File ID: U5028.D	Extraction Method: SW846 3540	% Solids: 81.
Units: ug/Kgdrwt	Lab Prep Batch: WG140392	Report Date: 01-APR-14

CAS Number	Compound Name	RT	Est. Concentration	Qualifier
1002-84-2	Pentadecanoic acid	20.737	474	J
	Unknown	21.627	1160	J
	Unknown	23.324	1700	J
	Unknown	23.966	4360	J
	Unknown	24.245	594	J
14811-95-1	1,19-Eicosadiene	26.523	339	J
1000351-74	Octacosyl trifluoroacetate	27.009	843	J
1000351-86	Hexacosyl acetate	27.796	576	J
14811-95-1	1,19-Eicosadiene	28.003	363	J
	Unknown	29.866	1140	J

Mr Maler

Page 1 of 1

Client: Weston Solutions, Inc. Lab ID: SH1786-6 Client ID: SS-06 Project: Nantucket Memorial Airport **SDG: SH1786** Lab File ID: U5004.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM **Extraction Method:** SW846 3540 Lab Prep Batch: WG140392

Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 85. Report Date: 01-APR-14

Cert No E87604

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aniline	U	950	ug/Kgdryw	t 1	820	950	100	710
Phenol	U	380	ug/Kgdryw	t 1	330	380	180	290
Bis(2-Chloroethyl)Ether	U	380	ug/Kgdryw	t 1	330	380	94.	290
2-Chlorophenol	U	380	ug/Kgdryw		330	380	190	290
1,3-Dichlorobenzene	U	380	ug/Kgdryw	t 1	330	380	90.	290
1,4-Dichlorobenzene	U	380	ug/Kgdryw	t 1	330	380	99.	290
1,2-Dichlorobenzene	U	380	ug/Kgdryw	t 1	330	380	100	290
2-Methylphenol	U	380	ug/Kgdryw	t 1	330	380	230	290
2,2'-Oxybis(1-Chloropropane)	U	380	ug/Kgdryw	t 1	330	380	100	290
3&4-Methylphenol	U	380	ug/Kgdrywt	t 1	330	380	220	290
Hexachloroethane	U	380	ug/Kgdrywi	t 1	330	380	110	290
Nitrobenzene	U	380	ug/Kgdrywi	t 1	330	380	100	290
Isophorone	U	380	ug/Kgdrywt	t 1	330	380	87.	290
2-Nitrophenol	U	380	ug/Kgdrywt	t 1	330	380	190	290
2,4-Dimethylphenol	U	380	ug/Kgdrywt		330	380	190	290
Bis(2-Chloroethoxy)Methane	U	380	ug/Kgdrywt	t 1	330	380	110	290
2,4-Dichlorophenol	U	380	ug/Kgdrywt	t 1	330	380	170	290
1,2,4-Trichlorobenzene	U	380	ug/Kgdrywt	t 1	330	380	94.	290
Naphthalene	U	380	ug/Kgdrywt	t 1	330	380	100	290
4-Chloroaniline	υ🖌	380	ug/Kgdrywt	t 1	330	380	140	290
Hexachlorobutadiene	U	380	ug/Kgdrywt	t 1	330	380	96.	290
2-Methylnaphthalene	U	380	ug/Kgdrywt	t 1	330	380	110	290
2,4,6-Trichlorophenol	U	380	ug/Kgdrywt	t 1	330	380	180	290
2,4,5-Trichlorophenol	U	950	ug/Kgdrywt	t 1	820	950	180	710
2-Chloronaphthalene	U 🖌	380	ug/Kgdrywt	t 1	330	380	100	290
Dimethyl Phthalate	U	380	ug/Kgdrywt	t 1	330	380	90.	290
Acenaphthylene	U	380	ug/Kgdrywt	t 1	330	380	81.	290
2,6-Dinitrotoluene	U	380	ug/Kgdrywt	t 1	330	380	91.	290
Acenaphthene	U	380	ug/Kgdrywt	t 1	330	380	75.	290
2,4-Dinitrophenol	U	950	ug/Kgdrywt	t 1	820	950	440	710
4-Nitrophenol	ບ 🎽	950	ug/Kgdrywt	t 1	820	950	360	710
Dibenzofuran	U	380	ug/Kgdrywt	t 1	330	380	91.	290
2,4-Dinitrotoluene	U	380	ug/Kgdrywt	t 1	330	380	98.	290
Diethylphthalate	U	380	ug/Kgdrywt		330	380	92.	290
Fluorene	U	380	ug/Kgdrywt		330	380	94.	290
			-					

Page 1 of 2

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

Client: Weston Solutions, Inc. Lab ID: SH1786-6 Client ID: SS-06 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: U5004.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392 Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 85. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
4-Bromophenyl-Phenylether	U	380	ug/Kgdryw	t 1	330	380	98.	290
Hexachlorobenzene	U	380	ug/Kgdrywt	t 1	330	380	95.	290
Pentachlorophenol	U	950	ug/Kgdrywt	t 1	820	950	270	710
Phenanthrene	J	150	ug/Kgdrywt	t 1	330	380	96.	290
Anthracene	U	380	ug/Kgdrywt	t 1	330	380	9 7.	290
Di-N-Butylphthalate	U	380	ug/Kgdrywt	t 1	330	380	120	290
Fluoranthene	J	360	ug/Kgdrywt	t 1	330	380	120	290
Pyrene	J	360	ug/Kgdrywt	t 1	330	380	120	290
Butylbenzylphthalate	U	380	ug/Kgdrywt	t 1	330	380	110	290
3,3'-Dichlorobenzidine	U	380	ug/Kgdrywt	t 1	330	380	130	290
Benzo(a)anthracene	J	180	ug/Kgdrywt	t 1	330	380	99.	290
Chrysene	J	200	ug/Kgdrywt	t 1	330	380	110	290
Bis(2-Ethylhexyl)Phthalate	U	380	ug/Kgdrywt	t 1	330	380	110	290
Di-N-Octylphthalate	U	380	ug/Kgdrywt	t 1	330	380	240	290
Benzo(b)fluoranthene	J	240	ug/Kgdrywt	t 1	330	380	160	290
Benzo(k)fluoranthene	J	130	ug/Kgdrywt	t 1	330	380	96.	290
Benzo(a)pyrene	J	190	ug/Kgdrywt	t 1	330	380	110	290
Indeno(1,2,3-cd)pyrene	U	380	ug/Kgdrywt	t 1	330	380	140	290
Dibenzo(a,h)anthracene	U	380	ug/Kgdrywt	t 1	330	380	150	290
Benzo(g,h,i)perylene	U	380	ug/Kgdryw	t 1	330	380	120	290
Acetophenone	U	380	ug/Kgdryw	t 1	330	380	200	290
Azobenzene	U	760	ug/Kgdryw	t 1	660	760	160	570
2-Fluorophenol		61.9						
Phenol-D6		68.9						
Nitrobenzene-d5		67.4						
2-Fluorobiphenyl		76.7						
2,4,6-Tribromophenol		86.3						
Terphenyl-d14		100.						

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

Page 2 of 2

Tentatively Identified Compounds

Sample Date: 20-MAR-14	Analysis Date: 27-MAR-14
Received Date: 21-MAR-14	Analyst: JCG
Extract Date: 25-MAR-14	Analysis Method: SW846 8270C
Extracted By:AM	Matrix: SL
Extraction Method: SW846 3540	% Solids: 85.
Lab Prep Batch: WG140392	Report Date: 01-APR-14
	Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540

CAS Number	Compound Name	RT	Est. Concentration	Qualifier
5989-27-5	D-Limonene	8.888	358	J
	Unknown	21.618	500	J
	Unknown	23.326	264	J
	Unknown	23.947	1470	J
1235-74-1	1-Phenanthrenecarboxylic acid, 1,2,3,4,	24.237	347	J
1740-19-8	1-Phenanthrenecarboxylic acid, 1,2,3,4,	25.055	400	J
480-39-7	4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-	25.417	1150	J
	Unknown Alkane	29.826	634	J
	Unknown	31.234	697	J
	Unknown	31.762	569	J

JUX Justice

Page 1 of 1

http://www.katahdinlab.com

Cert No E87604

Report of Analytical Results

Client: Weston Solutions, Inc. Lab ID:SH1786-7 Client ID: SS-07 Project: Nantucket Memorial Airport **SDG:** SH1786 Lab File ID: U5007.D

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392

Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 84. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aniline	U 🏹	960	ug/Kgdrywt	t 1	820	960	110	720
Phenol	U	390	ug/Kgdrywt	t 1	330	390	180	290
Bis(2-Chloroethyl)Ether	U	390	ug/Kgdrywt	t 1	330	390	95.	290
2-Chlorophenol	U	390	ug/Kgdrywt	t 1	330	390	190	290
1,3-Dichlorobenzene	U	390	ug/Kgdrywt	t 1	330	390	91.	290
1,4-Dichlorobenzene	U	390	ug/Kgdrywt	t 1	330	390	100	290
1,2-Dichlorobenzene	U	390	ug/Kgdrywt	t 1	330	390	100	290
2-Methylphenol	U	390	ug/Kgdrywt	t 1	330	390	230	290
2,2'-Oxybis(1-Chloropropane)	U	390	ug/Kgdrywt	t 1	330	390	100	290
3&4-Methylphenol	U	390	ug/Kgdrywt	t 1	330	390	220	290
Hexachloroethane	U	390	ug/Kgdrywt	t 1	330	390	110	290
Nitrobenzene	U	390	ug/Kgdrywt	t 1	330	390	110	290
Isophorone	U	390	ug/Kgdrywt	t 1	330	390	88.	290
2-Nitrophenol	U	390	ug/Kgdrywt	t 1	330	390	200	290
2,4-Dimethylphenol	U	390	ug/Kgdrywt	t 1	330	390	190	290
Bis(2-Chloroethoxy)Methane	U	390	ug/Kgdrywt	t 1	330	390	110	290
2,4-Dichlorophenol	U	390	ug/Kgdrywt	t 1	330	390	180	290
1,2,4-Trichlorobenzene	U	390	ug/Kgdrywt	t 1	330	390	95.	290
Naphthalene	U	390	ug/Kgdrywt	t 1	330	390	100	290
4-Chloroaniline	Uゴ	390	ug/Kgdrywt	t 1	330	390	140	290
Hexachlorobutadiene	U	390	ug/Kgdrywt	t 1	330	390	97.	290
2-Methylnaphthalene	U	390	ug/Kgdrywt	t 1	330	390	110	290
2,4,6-Trichlorophenol	U	390	ug/Kgdrywt	t 1	330	390	180	290
2,4,5-Trichlorophenol	U	960	ug/Kgdrywt	t 1	820	960	180	720
2-Chloronaphthalene	U 🗲	390	ug/Kgdrywt	t 1	330	390	100	290
Dimethyl Phthalate	U	390	ug/Kgdrywt	t 1	330	390	91.	290
Acenaphthylene	U	390	ug/Kgdrywt	t 1	330	390	82.	290
2,6-Dinitrotoluene	U	390	ug/Kgdrywt	t 1	330	390	92.	290
Acenaphthene	U	390	ug/Kgdrywt	t 1	330	390	76.	290
2,4-Dinitrophenol	U	960	ug/Kgdrywt	t 1	820	960	440	720
4-Nitrophenol	U 🤞	960	ug/Kgdrywt	t 1	820	960	360	720
Dibenzofuran	U	390	ug/Kgdrywt	t 1	330	390	92.	290
2,4-Dinitrotoluene	U	390	ug/Kgdrywt	t 1	330	390	100	290
Diethylphthalate	U	390	ug/Kgdrywt	t 1	330	390	94.	290
Fluorene	U	390	ug/Kgdrywt	t 1	330	390	95.	290

Page 1 of 2

600 Technology Way P.O. Box 540, Scarborough, ME 04070

Tel:(207) 874-2400 Fax:(207) 775-4029

Client: Weston Solutions, Inc. Lab ID: SH1786-7 Client ID: SS-07 Project: Nantucket Memorial Airport **SDG:** SH1786 Lab File ID: U5007.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM **Extraction Method:** SW846 3540 Lab Prep Batch: WG140392

Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 84. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
4-Bromophenyl-Phenylether	U	390	ug/Kgdrywt	t 1	330	390	100	290
Hexachlorobenzene	U	390	ug/Kgdrywt	t 1	330	390	96.	290
Pentachlorophenol	U	960	ug/Kgdrywt	t 1	820	960	280	720
Phenanthrene	U	390	ug/Kgdrywt	t 1	330	390	97.	290
Anthracene	U	390	ug/Kgdrywt	t 1	330	390	98.	290
Di-N-Butylphthalate	U	390	ug/Kgdrywt	t 1	330	390	120	290
Fluoranthene	J	130	ug/Kgdrywt	t 1	330	390	120	290
Pyrene	J	250	ug/Kgdrywt	t 1	330	390	120	290
Butylbenzylphthalate	U	390	ug/Kgdryw	t 1	330	390	110	290
3,3'-Dichlorobenzidine	υ <mark></mark>	390	ug/Kgdrywt	t 1	330	390	130	290
Benzo(a)anthracene	U	390	ug/Kgdrywt	t 1	330	390	100	290
Chrysene	U	390	ug/Kgdrywt	t 1	330	390	110	290
Bis(2-Ethylhexyl)Phthalate	U	390	ug/Kgdrywt	t 1	330	390	110	290
Di-N-Octylphthalate	U 🔨	390	ug/Kgdrywt	t 1	330	390	250	290
Benzo(b)fluoranthene	υS	390	ug/Kgdrywt	t 1	330	390	160	290
Benzo(k)fluoranthene	υ <mark></mark>	390	ug/Kgdrywt	t 1	330	390	97.	290
Benzo(a)pyrene	υJ	390	ug/Kgdryw	t 1	330	390	110	290
Indeno(1,2,3-cd)pyrene	U 🔨	390	ug/Kgdrywt	t 1	330	390	140	290
Dibenzo(a,h)anthracene	U	390	ug/Kgdrywt	t 1	330	390	150	290
Benzo(g,h,i)perylene	US	390	ug/Kgdrywt	t 1	330	390	120	290
Acetophenone	U	390	ug/Kgdryw	t 1	330	390	210	290
Azobenzene	U	770	ug/Kgdryw	t 1	660	770	160	580
2-Fluorophenol		61.0						
Phenol-D6		71.3						
Nitrobenzene-d5		69.2						
2-Fluorobiphenyl		79.0						
2,4,6-Tribromophenol		87.2						
Terphenyl-d14	*	145.						

410/14

http://www.katahdinlab.com

Page 2 of 2

Tentatively Identified Compounds

Lab ID:SH1786-7	Sample Date: 20-MAR-14	Analysis Date: 27-MAR-14
Client ID: SS-07	Received Date: 21-MAR-14	Analyst: JCG
Project: Nantucket Memorial Airport	Extract Date: 25-MAR-14	Analysis Method: SW846 8270C
SDG: SH1786	Extracted By: AM	Matrix: SL
Lab File ID: U5007.D	Extraction Method: SW846 3540	% Solids: 84.
Units: ug/Kgdrwt	Lab Prep Batch: WG140392	Report Date: 01-APR-14

CAS Number	Compound Name	RT	Est. Concentration	Qualifier
57-10-3	n-Hexadecanoic acid	20.737	244	J
	Unknown	24.235	710	J
1740-19-8	1-Phenanthrenecarboxylic acid, 1,2,3,4,	25.053	566	J
	Unknown Alkane	29.814	998	J
	Unknown	31.232	486	J

Page 1 of 1

My Huda

Client: Weston Solutions, Inc. Lab ID: SH1786-8 Client ID: SS-08 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: U5005.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392 Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 82. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aniline	U	980	ug/Kgdryw	t 1	820	980	110	730
Phenol	U	390	ug/Kgdryw	t 1	330	390	190	300
Bis(2-Chloroethyl)Ether	U	390	ug/Kgdryw	t 1	330	390	9 7.	300
2-Chlorophenol	U	390	ug/Kgdryw	t 1	330	390	200	300
1,3-Dichlorobenzene	U	390	ug/Kgdryw	t 1	330	390	93.	300
1,4-Dichlorobenzene	U	390	ug/Kgdryw	t 1	330	390	100	300
1,2-Dichlorobenzene	U	390	ug/Kgdryw	t 1	330	390	100	300
2-Methylphenol	U	390	ug/Kgdryw	t 1	330	390	240	300
2,2'-Oxybis(1-Chloropropane)	U	390	ug/Kgdryw	t 1	330	390	110	300
3&4-Methylphenol	U	390	ug/Kgdrywi	t 1	330	390	220	300
Hexachloroethane	U	390	ug/Kgdryw	t 1	330	390	110	300
Nitrobenzene	U	390	ug/Kgdrywt	t 1	330	390	110	300
Isophorone	U	390	ug/Kgdryw	t 1	330	390	90.	300
2-Nitrophenol	U	390	ug/Kgdrywt	t 1	330	390	200	300
2,4-Dimethylphenol	U	390	ug/Kgdrywt	t 1	330	390	200	300
Bis(2-Chloroethoxy)Methane	U	390	ug/Kgdrywt	t 1	330	390	110	300
2,4-Dichlorophenol	U	390	ug/Kgdrywt	t 1	330	390	180	300
1,2,4-Trichlorobenzene	U	390	ug/Kgdrywt	t 1	330	390	97.	300
Naphthalene	U	390	ug/Kgdrywt	t 1	330	390	100	300
4-Chloroaniline	U 🛫	390	ug/Kgdrywt		330	390	140	300
Hexachlorobutadiene	U	390	ug/Kgdrywt	t 1	330	390	99.	300
2-Methylnaphthalene	U	390	ug/Kgdrywt	t 1	330	390	110	300
2,4,6-Trichlorophenol	U	390	ug/Kgdrywt	t 1	330	390	180	300
2,4,5-Trichlorophenol	U	980	ug/Kgdrywt	t 1	820	980	180	730
2-Chloronaphthalene	ប 🗲	390	ug/Kgdrywt	t 1	330	390	100	300
Dimethyl Phthalate	U	390	ug/Kgdrywt	t 1	330	390	93.	300
Acenaphthylene	U	390	ug/Kgdrywt	t 1	330	390	84.	300
2,6-Dinitrotoluene	U	390	ug/Kgdrywt	t 1	330	390	94.	300
Acenaphthene	U	390	ug/Kgdrywt	t 1	330	390	78.	300
2,4-Dinitrophenol	U	980	ug/Kgdrywt	t 1	820	980	450	730
4-Nitrophenol	บ 🕇	980	ug/Kgdrywt	t 1	820	980	370	730
Dibenzofuran	U	390	ug/Kgdrywt	t 1	330	390	94.	300
2,4-Dinitrotoluene	U	390	ug/Kgdrywt	t 1	330	390	100	300
Diethylphthalate	U	390	ug/Kgdrywt	t 1	330	390	96.	300
Fluorene	U	390	ug/Kgdrywt	t 1	330	390	97.	300
]	Page 1	of 2					


600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

Client: Weston Solutions, Inc. Lab ID: SH1786-8 Client ID: SS-08 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: U5005.D

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By: AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392 Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 82. Report Date: 01-APR-14

Cert No E87604

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
4-Bromophenyl-Phenylether	U	390	ug/Kgdrywt	1	330	390	100	300
Hexachlorobenzene	U	390	ug/Kgdrywt	1	330	390	98.	300
Pentachlorophenol	U	980	ug/Kgdrywt	1	820	980	280	730
Phenanthrene	U	390	ug/Kgdrywt	1	330	390	99.	300
Anthracene	U	390	ug/Kgdrywt	1	330	390	100	300
Di-N-Butylphthalate	U	390	ug/Kgdrywt	t 1	330	390	120	300
Fluoranthene	U	390	ug/Kgdrywt	1	330	390	130	300
Pyrene	U	390	ug/Kgdrywt	1	330	390	120	300
Butylbenzylphthalate	U	390	ug/Kgdrywt	1	330	390	110	300
3,3'-Dichlorobenzidine	U	390	ug/Kgdrywt	1	330	390	140	300
Benzo(a)anthracene	U	390	ug/Kgdrywt	1	330	390	100	300
Chrysene	U	390	ug/Kgdrywt	1	330	390	110	300
Bis(2-Ethylhexyl)Phthalate	U	390	ug/Kgdrywt	1	330	390	120	300
Di-N-Octylphthalate	U	390	ug/Kgdrywt	1	330	390	250	300
Benzo(b)fluoranthene	U	390	ug/Kgdrywt	1	330	390	160	300
Benzo(k)fluoranthene	U	390	ug/Kgdrywt	1	330	390	99.	300
Benzo(a)pyrene	U	390	ug/Kgdrywt	1	330	390	110	300
Indeno(1,2,3-cd)pyrene	U	390	ug/Kgdrywt	: 1	330	390	140	300
Dibenzo(a,h)anthracene	U	390	ug/Kgdrywt	1	330	390	150	300
Benzo(g,h,i)perylene	U	390	ug/Kgdrywt	1	330	390	120	300
Acetophenone	U	390	ug/Kgdrywt	1	330	390	210	300
Azobenzene	U	790	ug/Kgdrywt	1	660	790	160	590
2-Fluorophenol		58.8						
Phenol-D6		65.6						
Nitrobenzene-d5		65.3						
2-Fluorobiphenyl		72.4						
2,4,6-Tribromophenol		84.7						
Terphenyl-d14		93.5						

Page 2 of 2

Alcolid

Tentatively Identified Compounds

Lab ID:SH1786-8	Sample Date: 20-MAR-14	Analysis Date: 27-MAR-14
Client ID: SS-08	Received Date: 21-MAR-14	Analyst: JCG
Project: Nantucket Memorial Airport	Extract Date: 25-MAR-14	Analysis Method: SW846 8270C
SDG: SH1786	Extracted By:AM	Matrix: SL
Lab File ID: U5005.D	Extraction Method: SW846 3540	% Solids: 82.
Units: ug/Kgdrwt	Lab Prep Batch: WG140392	Report Date: 01-APR-14

CAS Number	Compound Name	RT	Est. Concentration	Qualifier
4707-47-5	Benzoic acid, 2,4-dihydroxy-3,6-dimethy	18.11	392	J
	Unknown	20.687	308	J
1740-19-8	1-Phenanthrenecarboxylic acid, 1,2,3,4,	25.045	178	J
	Unknown	28.005	276	J
	Unknown	31.089	412	J
	Unknown	31.234	714	J
	Unknown	31.762	647	J

Page 1 of 1

J. Holy

Client: Weston Solutions, Inc. Lab ID: SH1786-9 Client ID: SS-03-D Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: U5006.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392 Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 87. Report Date: 01-APR-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aniline	U	940	ug/Kgdryw	t 1	820	940	100	710
Phenol	U	380	ug/Kgdryw	t 1	330	380	180	280
Bis(2-Chloroethyl)Ether	U	380	ug/Kgdryw	t 1	330	380	93.	280
2-Chlorophenol	U	380	ug/Kgdryw	t 1	330	380	190	280
1,3-Dichlorobenzene	U	380	ug/Kgdryw	t 1	330	380	90.	280
1,4-Dichlorobenzene	U	380	ug/Kgdryw	t 1	330	380	99 .	280
1,2-Dichlorobenzene	U	380	ug/Kgdryw	t 1	330	380	100	280
2-Methylphenol	U	380	ug/Kgdryw	t 1	330	380	230	280
2,2'-Oxybis(1-Chloropropane)	U	380	ug/Kgdryw	t 1	330	380	100	280
3&4-Methylphenol	U	380	ug/Kgdryw	t 1	330	380	220	280
Hexachloroethane	U	380	ug/Kgdryw	t 1	330	380	110	280
Nitrobenzene	U	380	ug/Kgdryw	t 1	330	380	100	280
Isophorone	U	380	ug/Kgdryw	t 1	330	380	86.	280
2-Nitrophenol	U	380	ug/Kgdryw	t 1	330	380	190	280
2,4-Dimethylphenol	U	380	ug/Kgdryw	t 1	330	380	190	280
Bis(2-Chloroethoxy)Methane	U	380	ug/Kgdryw	t 1	330	380	110	280
2,4-Dichlorophenol	U	380	ug/Kgdryw	t 1	330	380	170	280
1,2,4-Trichlorobenzene	U	380	ug/Kgdryw	t 1	330	380	93.	280
Naphthalene	U	380	ug/Kgdryw	t 1	330	380	100	280
4-Chloroaniline	υ	380	ug/Kgdryw	t 1	330	380	140	280
Hexachlorobutadiene	U	380	ug/Kgdryw	t 1	330	380	95.	280
2-Methylnaphthalene	U	380	ug/Kgdryw	t 1	330	380	100	280
2,4,6-Trichlorophenol	U	380	ug/Kgdryw	t 1	330	380	180	280
2,4,5-Trichlorophenol	U	940	ug/Kgdryw	t 1	820	940	180	710
2-Chloronaphthalene	U 🗲	380	ug/Kgdryw	t 1	330	380	100	280
Dimethyl Phthalate	U	380	ug/Kgdryw	t 1	330	380	90.	280
Acenaphthylene	U	380	ug/Kgdryw	t 1	330	380	80.	280
2,6-Dinitrotoluene	U	380	ug/Kgdryw	t 1	330	380	91.	280
Acenaphthene	U	380	ug/Kgdryw	t 1	330	380	75.	280
2,4-Dinitrophenol	U	940	ug/Kgdryw	t 1	820	940	430	710
4-Nitrophenol	υ <mark></mark>	940	ug/Kgdryw	t 1	820	940	360	710
Dibenzofuran	U	380	ug/Kgdryw	t 1	330	380	91.	280
2,4-Dinitrotoluene	U	380	ug/Kgdryw	t 1	330	380	98.	280
Diethylphthalate	U	380	ug/Kgdryw	t 1	330	380	92.	280
Fluorene	U	380	ug/Kgdryw	t 1	330	380	93.	280
		n 1	· •					

Page 1 of 2

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

2. Kuliy

Client: Weston Solutions, Inc. Lab ID: SH1786-9 Client ID: SS-03-D Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: U5006.D

Report of Analytical Results

Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By:AM Extraction Method: SW846 3540 Lab Prep Batch: WG140392 Analysis Date: 27-MAR-14 Analyst: JCG Analysis Method: SW846 8270C Matrix: SL % Solids: 87. Report Date: 01-APR-14

Cert No E87604

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
4-Bromophenyl-Phenylether	U	380	ug/Kgdrywt	: 1	330	380	98.	280
Hexachlorobenzene	U	380	ug/Kgdrywt	t 1	330	380	94.	280
Pentachlorophenol	U	940	ug/Kgdrywt	: 1	820	940	270	710
Phenanthrene	U	380	ug/Kgdrywt	t 1	330	380	95.	280
Anthracene	U	380	ug/Kgdrywt	t 1	330	380	97.	280
Di-N-Butylphthalate	U	380	ug/Kgdrywt	t 1	330	380	120	280
Fluoranthene	J	140	ug/Kgdrywt	: 1	330	380	120	280
Pyrene	J	140	ug/Kgdrywt	t 1	330	380	120	280
Butylbenzylphthalate	U	380	ug/Kgdrywt	: 1	330	380	110	280
3,3'-Dichlorobenzidine	U	380	ug/Kgdrywt	t 1	330	380	130	280
Benzo(a)anthracene	U	380	ug/Kgdrywt	: 1	330	380	99 .	280
Chrysene	U	380	ug/Kgdrywt	: 1	330	380	110	280
Bis(2-Ethylhexyl)Phthalate	U	380	ug/Kgdrywt	: 1	330	380	110	280
Di-N-Octylphthalate	U	380	ug/Kgdrywt	t 1	330	380	240	280
Benzo(b)fluoranthene	U	380	ug/Kgdrywt	t 1	330	380	150	280
Benzo(k)fluoranthene	U	380	ug/Kgdrywt	: 1	330	380	95.	280
Benzo(a)pyrene	U	380	ug/Kgdrywt	t 1	330	380	110	280
Indeno(1,2,3-cd)pyrene	U	380	ug/Kgdrywt	: 1	330	380	140	280
Dibenzo(a,h)anthracene	U	380	ug/Kgdrywt	t 1	330	380	150	280
Benzo(g,h,i)perylene	U	380	ug/Kgdrywt	: 1	330	380	120	280
Acetophenone	U	380	ug/Kgdrywt	t 1	330	380	200	280
Azobenzene	U	760	ug/Kgdryw	: 1	660	760	160	570
2-Fluorophenol		65.0						
Phenol-D6		72.8						
Nitrobenzene-d5		72.4						
2-Fluorobiphenyl		80.7						
2,4,6-Tribromophenol		82.5						
Terphenyl-d14		110.						

Page 2 of 2

Tentatively Identified Compounds

Lab ID:SH1786-9	Sample Date: 20-MAR-14	Analysis Date: 27-MAR-14
Client ID: SS-03-D	Received Date: 21-MAR-14	Analyst: JCG
Project: Nantucket Memorial Airport	Extract Date: 25-MAR-14	Analysis Method: SW846 8270C
SDG: SH1786	Extracted By: AM	Matrix: SL
Lab File ID: U5006.D	Extraction Method: SW846 3540	% Solids: 87.
Units: ug/Kgdrwt	Lab Prep Batch: WG140392	Report Date: 01-APR-14

CAS Number	Compound Name	RT	Est. Concentration	Qualifier
555-10-2	.betaPhellandrene	8.917	2050	J
57-10-3	n-Hexadecanoic acid	20.737	388	J
	Unknown	20.965	607	J
	Unknown	21.638	2160	J
	Unknown	23.335	1340	J
	Unknown	23.966	4760	J
	Unknown	24.267	1760	J
1000351-78	Heptacosyl acetate	27.806	1220	J
	Unknown Alkane	29.825	1780	J
	Unknown	31.243	669	J

Page 1 of 1

All 1110/14

Lab ID:SH1786-12 Client ID: SS-01

SDG: SH1786

Report of Analytical Results

Client: Weston Solutions, Inc. Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Project: Nantucket Memorial Airport **Extracted By: JMS Extraction Method:** SW846 8330 Lab File ID: HHC10070.1 Lab Prep Batch: WG140401

Analysis Date: 27-MAR-14 Analyst: AC Analysis Method: SW846 8330 Matrix: SL % Solids: 99. Report Date: 28-MAR-14

Compound	Qualifier	Result	Units	Dilution	PQL	ADJ PQL	ADJ MDL
HMX	U	100	ug/Kgdrywt	1	100	100	8.6
PETN	U	800	ug/Kgdrywt	1	800	800	110
RDX	U	100	ug/Kgdrywt	1	100	100	6.8
1,3,5-Trinitrobenzene	U	100	ug/Kgdrywt	1	100	100	6.7
1,3-Dinitrobenzene	U	100	ug/Kgdrywt	1	100	100	6.2
Tetryl	U	100	ug/Kgdrywt	1	100	100	5.4
Nitrobenzene	U	100	ug/Kgdrywt	1	100	100	22.
Nitroglycerin	U	800	ug/Kgdrywt	1	800	800	120
2,4,6-Trinitrotoluene	U	100	ug/Kgdrywt	1	100	100	6.7
4-Am-DNT	U	100	ug/Kgdrywt	1	100	100	17.
2-Am-DNT	U	100	ug/Kgdrywt	1	100	100	21.
2,6-Dinitrotoluene	U	100	ug/Kgdrywt	1	100	100	27.
2,4-Dinitrotoluene	U	100	ug/Kgdrywt	1	100	100	15.
2-Nitrotoluene	U	100	ug/Kgdrywt	1	100	100	12.
4-Nitrotoluene	U	100	ug/Kgdrywt	1	100	100	27.
3-Nitrotoluene	U	100	ug/Kgdrywt	1	100	100	7.9
1,2-Dinitrobenzene		81.1	%				

4/10/14

Page 1 of 1

Client: Weston Solutions, Inc. Lab ID: SH1786-13 Client ID: SS-02 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: HHC10071.] Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By: JMS Extraction Method: SW846 8330 Lab Prep Batch: WG140401 Analysis Date: 27-MAR-14 Analyst: AC Analysis Method: SW846 8330 Matrix: SL % Solids: 99. Report Date: 28-MAR-14

Compound	Qualifier	Result	Units	Dilution	PQL	ADJ PQL	ADJ MDL
НМХ	U	99	ug/Kgdrywt	t 1	100	99.	8.5
PETN	U	790	ug/Kgdrywt	t 1	800	790	110
RDX	U	99	ug/Kgdrywt	t 1	100	99.	6.7
1,3,5-Trinitrobenzene	U	99	ug/Kgdrywt	t 1	100	99.	6.6
1,3-Dinitrobenzene	U	99	ug/Kgdrywt	t 1	100	99.	6.1
Tetryl	U	99	ug/Kgdrywt	t 1	100	99.	5.3
Nitrobenzene	U	99	ug/Kgdrywt	t 1	100	99.	22.
Nitroglycerin	U	790	ug/Kgdrywt	t 1	800	790	120
2,4,6-Trinitrotoluene	U	99	ug/Kgdrywt	t 1	100	99.	6.6
4-Am-DNT	U	99	ug/Kgdrywt	t 1	100	99.	17.
2-Am-DNT	U	99	ug/Kgdrywt	t 1	100	99.	21.
2,6-Dinitrotoluene	U	99	ug/Kgdrywt	t 1	100	99.	27.
2,4-Dinitrotoluene	U	99	ug/Kgdrywt	t 1	100	99.	15.
2-Nitrotoluene	U	99	ug/Kgdrywt	t 1	100	99.	12.
4-Nitrotoluene	U	99	ug/Kgdrywt	t 1	100	99.	27.
3-Nitrotoluene	U	99	ug/Kgdrywt	t 1	100	99.	7.8
1,2-Dinitrobenzene		89.7	%				

for unoted

http://www.katahdinlab.com

Page 1 of 1

Client: Weston Solutions, Inc. Lab ID: SH1786-14 Client ID: SS-03 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: HHC10073.] Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By: JMS Extraction Method: SW846 8330 Lab Prep Batch: WG140401 Analysis Date: 27-MAR-14 Analyst: AC Analysis Method: SW846 8330 Matrix: SL % Solids: 100 Report Date: 28-MAR-14

Compound	Qualifier	Result	Units	Dilution	PQL	ADJ PQL	ADJ MDL
НМХ	U	98	ug/Kgdrywt	t 1	100	98.	8.4
PETN	U	780	ug/Kgdrywt	t 1	800	780	100
RDX	U	98	ug/Kgdrywt	t 1	100	98.	6.6
1,3,5-Trinitrobenzene	U	98	ug/Kgdrywt	t 1	100	98.	6.5
1,3-Dinitrobenzene	U	98	ug/Kgdrywt	t 1	100	98.	6.0
Tetryl	U	98	ug/Kgdrywt	t 1	100	98.	5.3
Nitrobenzene	U	98	ug/Kgdrywt	t 1	100	98.	21.
Nitroglycerin	U	780	ug/Kgdrywt	t 1	800	780	120
2,4,6-Trinitrotoluene	U	98	ug/Kgdrywt	t 1	100	98.	6.5
4-Am-DNT	U	98	ug/Kgdrywt	t 1	100	98.	16.
2-Am-DNT	U	98	ug/Kgdrywt	t 1	100	98.	20.
2,6-Dinitrotoluene	U	98	ug/Kgdrywt	t 1	100	98.	26.
2,4-Dinitrotoluene	U	98	ug/Kgdrywt	t 1	100	98.	15.
2-Nitrotoluene	U	98	ug/Kgdrywt	t 1	100	98.	12.
4-Nitrotoluene	U	98	ug/Kgdrywt	t 1	100	98.	26.
3-Nitrotoluene	U	98	ug/Kgdrywi	t 1	100	98.	7.7
1,2-Dinitrobenzene		88.3	%				

J. Hugher

Page 1 of 1

Lab ID:SH1786-15

Lab File ID: HHC10074.1

Client ID: SS-04

SDG: SH1786

Report of Analytical Results

Sample Date: 20-MAR-14 Client: Weston Solutions, Inc. Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Project: Nantucket Memorial Airport Extracted By: JMS Extraction Method: SW846 8330 Lab Prep Batch: WG140401

Analysis Date: 27-MAR-14 Analyst: AC Analysis Method: SW846 8330 Matrix: SL % Solids: 99. Report Date: 28-MAR-14

Compound	Qualifier	Result	Units	Dilution	PQL	ADJ PQL	ADJ MDL
HMX	U	92	ug/Kgdrywt	1	100	92.	7.9
PETN	U	740	ug/Kgdrywt	1	800	740	100
RDX	U	92	ug/Kgdrywt	1	100	92.	6.3
1,3,5-Trinitrobenzene	U	92	ug/Kgdrywt	1	100	92.	6.2
1,3-Dinitrobenzene	U	92	ug/Kgdrywt	: 1	100	92.	5.7
Tetryl	U	92	ug/Kgdrywt	1	100	92.	5.0
Nitrobenzene	U	92	ug/Kgdrywt	1	100	92.	20.
Nitroglycerin	U	740	ug/Kgdrywt	: 1	800	740	110
2,4,6-Trinitrotoluene	U	92	ug/Kgdrywt	: 1	100	92.	6.2
4-Am-DNT	U	92	ug/Kgdrywt	1	100	92.	16.
2-Am-DNT	U	92	ug/Kgdrywt	1	100	92.	19.
2,6-Dinitrotoluene	U	92	ug/Kgdrywt	1	100	92.	25.
2,4-Dinitrotoluene	U	92	ug/Kgdrywt	1	100	92.	14.
2-Nitrotoluene	U	92	ug/Kgdrywt	1	100	92.	11.
4-Nitrotoluene	U	92	ug/Kgdrywt	: 1	100	92.	25.
3-Nitrotoluene	U	92	ug/Kgdrywt	1	100	92.	7.3
1,2-Dinitrobenzene		82.2	%				

http://www.katahdinlab.com

Page 1 of 1

Client: Weston Solutions, Inc. Lab ID: SH1786-16 Client ID: SS-05 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: HHC10075.1 Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By: JMS Extraction Method: SW846 8330 Lab Prep Batch: WG140401 Analysis Date: 27-MAR-14 Analyst: AC Analysis Method: SW846 8330 Matrix: SL % Solids: 99. Report Date: 28-MAR-14

Compound	Qualifier	Result	Units	Dilution	PQL	ADJ PQL	ADJ MDL
НМХ	U	100	ug/Kgdrywt	: 1	100	100	8.6
PETN	U	800	ug/Kgdrywt	: 1	800	800	110
RDX	U	100	ug/Kgdrywt	: 1	100	100	6.8
1,3,5-Trinitrobenzene	U	100	ug/Kgdrywt	: 1	100	100	6.7
1,3-Dinitrobenzene	U	100	ug/Kgdrywt	: 1	100	100	6.2
Tetryl	U	100	ug/Kgdrywt	: 1	100	100	5.4
Nitrobenzene	U	100	ug/Kgdrywt	: 1	100	100	22.
Nitroglycerin	U	800	ug/Kgdrywt	: 1	800	800	120
2,4,6-Trinitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	6.7
4-Am-DNT	U	100	ug/Kgdrywt	: 1	100	100	17.
2-Am-DNT	U	100	ug/Kgdrywt	: 1	100	100	21.
2,6-Dinitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	27.
2,4-Dinitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	15.
2-Nitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	12.
4-Nitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	27.
3-Nitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	7.9
1,2-Dinitrobenzene		83.1	%				

Wylidius

http://www.katahdinlab.com

Page 1 of 1

Client: Weston Solutions, Inc. Lab ID: SH1786-17 Client ID: SS-06 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: HHC10076.1 Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By: JMS Extraction Method: SW846 8330 Lab Prep Batch: WG140401 Analysis Date: 27-MAR-14 Analyst: AC Analysis Method: SW846 8330 Matrix: SL % Solids: 99. Report Date: 28-MAR-14

Compound	Qualifier	Result	Units	Dilution	PQL	ADJ PQL	ADJ MDL
НМХ	U	100	ug/Kgdrywt	1	100	100	8.6
PETN	U	800	ug/Kgdrywt	t 1	800	800	110
RDX	U	100	ug/Kgdrywt	1	100	100	6.8
1,3,5-Trinitrobenzene	U	100	ug/Kgdrywt	t 1	100	100	6.7
1,3-Dinitrobenzene	U	100	ug/Kgdrywt	1	100	100	6.2
Tetryl	U	100	ug/Kgdrywt	t 1	100	100	5.4
Nitrobenzene	U	100	ug/Kgdrywt	1	100	100	22.
Nitroglycerin	U	800	ug/Kgdrywt	1	800	800	120
2,4,6-Trinitrotoluene	U	100	ug/Kgdrywt	1	100	100	6.7
4-Am-DNT	U	100	ug/Kgdrywt	1	100	100	17.
2-Am-DNT	U	100	ug/Kgdrywt	1	100	100	21.
2,6-Dinitrotoluene	U	100	ug/Kgdrywt	t 1	100	100	27.
2,4-Dinitrotoluene	U	100	ug/Kgdrywt	1	100 -	100	15.
2-Nitrotoluene	U	100	ug/Kgdrywt	1	100	100	12.
4-Nitrotoluene	U	100	ug/Kgdrywt	1	100	100	27.
3-Nitrotoluene	U	100	ug/Kgdrywt	1	100	100	7.9
1,2-Dinitrobenzene		88.6	%				

M Hugher

Page 1 of 1

Client: Weston Solutions, Inc. Lab ID: SH1786-18 Client ID: SS-07 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: HHC10077.] Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By: JMS Extraction Method: SW846 8330 Lab Prep Batch: WG140401 Analysis Date: 27-MAR-14 Analyst: AC Analysis Method: SW846 8330 Matrix: SL % Solids: 100 Report Date: 28-MAR-14

Compound	Qualifier 🗸	Result	Units	Dilution	PQL	ADJ PQL	ADJ MDL
HMX	U 🌮	100	ug/Kgdrywt	1	100	100	8.6
PETN	U	800	ug/Kgdrywt	1	800	800	110
RDX	U	100	ug/Kgdrywt	1	100	100	6.8
1,3,5-Trinitrobenzene	U	100	ug/Kgdrywt	1	100	100	6.7
1,3-Dinitrobenzene	U	100	ug/Kgdrywt	1	100	100	6.2
Tetryl	U	100	ug/Kgdrywt	1	100	100	5.4
Nitrobenzene	U	100	ug/Kgdrywt	1	100	100	22.
Nitroglycerin	U	800	ug/Kgdrywt	1	800	800	120
2,4,6-Trinitrotoluene	U	100	ug/Kgdrywt	1	100	100	6.7
4-Am-DNT	U	100	ug/Kgdrywt	1	100	100	17.
2-Am-DNT	U	100	ug/Kgdrywt	1	100	100	21.
2,6-Dinitrotoluene	U	100	ug/Kgdrywt	1	100	100	27.
2,4-Dinitrotoluene	U	100	ug/Kgdrywt	1	100	100	15.
2-Nitrotoluene	U	100	ug/Kgdrywt	1	100	100	12.
4-Nitrotoluene	U	100	ug/Kgdrywt	1	100	100	27.
3-Nitrotoluene	U	100	ug/Kgdrywt	1	100	100	7.9
1,2-Dinitrobenzene		92.6	%				

Page 1 of 1

Client: Weston Solutions, Inc. Lab ID: SH1786-19 Client ID: SS-08 Project: Nantucket Memorial Airport SDG: SH1786 Lab File ID: HHC10078.1 Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Extracted By: JMS Extraction Method: SW846 8330 Lab Prep Batch: WG140401 Analysis Date: 27-MAR-14 Analyst: AC Analysis Method: SW846 8330 Matrix: SL % Solids: 99. Report Date: 28-MAR-14

Compound	Qualifier	Result	Units	Dilution	PQL	ADJ PQL	ADJ MDL
HMX	U	100	ug/Kgdrywt	: 1	100	100	8.7
PETN	U	800	ug/Kgdrywt	: 1	800	800	110
RDX	U	100	ug/Kgdrywt	: 1	100	100	6.8
1,3,5-Trinitrobenzene	U	100	ug/Kgdrywt	: 1	100	100	6.7
1,3-Dinitrobenzene	U	100	ug/Kgdrywt	: 1	100	100	6.2
Tetryl	U	100	ug/Kgdrywt	: 1	100	100	5.4
Nitrobenzene	U	100	ug/Kgdrywt	: 1	100	100	22.
Nitroglycerin	U	800	ug/Kgdrywt	: 1	800	800	120
2,4,6-Trinitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	6.7
4-Am-DNT	U	100	ug/Kgdrywt	: 1	100	100	17.
2-Am-DNT	U	100	ug/Kgdrywt	: 1	100	100	21.
2,6-Dinitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	27.
2,4-Dinitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	15.
2-Nitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	12.
4-Nitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	27.
3-Nitrotoluene	U	100	ug/Kgdrywt	: 1	100	100	8.0
1,2-Dinitrobenzene		91.0	%				

Hallet

Page 1 of 1

Lab ID: SH1786-20

Client ID: SS-03-D

SDG: SH1786

Report of Analytical Results

Client: Weston Solutions, Inc. Sample Date: 20-MAR-14 Received Date: 21-MAR-14 Extract Date: 25-MAR-14 Project: Nantucket Memorial Airport Extracted By: JMS **Extraction Method:** SW846 8330 Lab File ID: HHC10079.1 Lab Prep Batch: WG140401

Analysis Date: 27-MAR-14 Analyst: AC Analysis Method: SW846 8330 Matrix: SL % Solids: 100 Report Date: 28-MAR-14

Compound	Qualifier	Result	Units	Dilution	PQL	ADJ PQL	ADJ MDL
HMX	U	93	ug/Kgdrywt	: 1	100	93.	8.0
PETN	U	740	ug/Kgdrywt	: 1	800	740	100
RDX	U	93	ug/Kgdrywt	: 1	100	93.	6.3
1,3,5-Trinitrobenzene	U	93	ug/Kgdrywt	: 1	100	93.	6.2
1,3-Dinitrobenzene	U	93	ug/Kgdrywt	: 1	100	93.	5.8
Tetryl	U	93	ug/Kgdrywt	: 1	100	93.	5.0
Nitrobenzene	U	93	ug/Kgdrywt	: 1	100	93.	20.
Nitroglycerin	U	740	ug/Kgdrywt	: 1	800	740	120
2,4,6-Trinitrotoluene	U	93	ug/Kgdrywt	: 1	100	93.	6.2
4-Am-DNT	U	93	ug/Kgdrywt	: 1	100	93.	16.
2-Am-DNT	U	93	ug/Kgdrywt	1	100	93.	20.
2,6-Dinitrotoluene	U	93	ug/Kgdrywt	1	100	93.	25.
2,4-Dinitrotoluene	U	93	ug/Kgdrywt	1	100	93.	14.
2-Nitrotoluene	U	93	ug/Kgdrywt	1	100	93.	11.
4-Nitrotoluene	U	93	ug/Kgdrywt	1	100	93.	25.
3-Nitrotoluene	U	93	ug/Kgdrywt	1	100	93.	7.3
1,2-Dinitrobenzene		92.9	%				

Page 1 of 1

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 83.2

Client Field ID: SS-01

SDG Name: SH1786

Lab Sample ID: SH1786-001

Concentration Units : mg/Kg drywt

CAS No.	Analyte	Concentration C Q	М	DF	Adj. PQL	Adj. MDL
7429-90-5	ALUMINUM, TOTAL	2770	Р	1	24	0.56
7440-36-0	ANTIMONY, TOTAL	0.63 U 🕽	Р	1	0.63	0.055
7440-38-2	ARSENIC, TOTAL	1.47 <mark>u</mark>	Р	1	0.63	0.053
7440-39-3	BARIUM, TOTAL	6.02	Р	1	0.39	0.020
7440-41-7	BERYLLIUM, TOTAL	0.091 J	Р	1	0.39	0.0053
7440-43-9	CADMIUM, TOTAL	0.17 J	Р	1	0.39	0.0062
7440-47-3	CHROMIUM, TOTAL	3.89 J	Р	1	0.78	0.020
7440-48-4	COBALT, TOTAL	0.41 J	Р	1	0.78	0.023
7440-50-8	COPPER, TOTAL	4.66	Р	1	2.0	0.13
7439-89-6	IRON, TOTAL	4480	Р	1	7.8	1.1
7439-92-1	LEAD, TOTAL	21.9	Р	1	0.39	0.068
7439-95-4	MAGNESIUM, TOTAL	352 5	Р	1	7.8	0.53
7439-96 - 5	MANGANESE, TOTAL	26.2 ^J	Р	1	0.39	0.13
7439-97-6	MERCURY, TOTAL	0.017 J	CV	1	0.030	0.0047
7439-98-7	MOLYBDENUM, TOTAL	0.25 J	Р	1	0.78	0.039
7440-02-0	NICKEL, TOTAL	1.61	Ρ	1	0.78	0.035
7782-49-2	SELENIUM, TOTAL	0.78 U	Р	1	0.78	0.13
7440-22-4	SILVER, TOTAL	0.11 J	Р	1	0.78	0.021
7440-28-0	THALLIUM, TOTAL	1.2 U	Р	1	1.2	0.068
7440-62-2	VANADIUM, TOTAL	7.54	Р	1	0.78	0.029
7440-66-6	ZINC, TOTAL	35.4	Р	1	1.6	0.13
7440-67-7	ZIRCONIUM, TOTAL	10 U	Р	1	10	2.0

241C 4/10/14

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 81.9

Client Field ID: SS-02

SDG Name: SH1786

Lab Sample ID: SH1786-002

Concentration Units : mg/Kg drywt

CAS No.	Analyte	Concentration C Q	Μ	DF	Adj. PQL	Adj. MDL
7429-90-5	ALUMINUM, TOTAL	2890	Р	1	19	0.46
7440-36-0	ANTIMONY, TOTAL	0.52 U <mark>S</mark>	Р	1	0.52	0.045
7440-38-2	ARSENIC, TOTAL	1.86 U	Р	1	0.52	0.044
7440-39-3	BARIUM, TOTAL	7.73	Р	1	0.32	0.016
7440-41-7	BERYLLIUM, TOTAL	0.096 J	Р	1	0.32	0.0044
7440-43-9	CADMIUM, TOTAL	0.15 J	Р	1	0.32	0.0051
7440-47-3	CHROMIUM, TOTAL	4.37 🔰	Р	1	0.64	0.017
7440-48-4	COBALT, TOTAL	0.54 J	Р	1	0.64	0.019
7440-50-8	COPPER, TOTAL	4.72	Р	1	1.6	0.10
7439-89-6	IRON, TOTAL	5290	Р	1	6.4	0.90
7439-92-1	LEAD, TOTAL	24.2	Р	1	0.32	0.056
7439-95-4	MAGNESIUM, TOTAL	363 🔨	Р	1	6.4	0.44
7439-96-5	MANGANESE, TOTAL	28.4 🍼	Р	1	0.32	0.10
7439-97-6	MERCURY, TOTAL	0.022 J	CV	1	0.036	0.0056
7439-98-7	MOLYBDENUM, TOTAL	0.22 J	Р	1	0.64	0.032
7440-02-0	NICKEL, TOTAL	2.39	Р	1	0.64	0.028
7782-49-2	SELENIUM, TOTAL	0.64 U	Р	1	0.64	0.11
7440-22-4	SILVER, TOTAL	0.10 J	Р	1	0.64	0.017
7440-28-0	THALLIUM, TOTAL	0.084 JV	Р	1	0.97	0.056
7440-62-2	VANADIUM, TOTAL	8.01	Р	1	0.64	0.024
7440-66-6	ZINC, TOTAL	33.4	Р	1	1.3	0.11
7440-67-7	ZIRCONIUM, TOTAL	6.7 U	Р	1	6.7	1.3

JUL 1111/14

Lab Name: Katahdin Analytical Services

Client Field ID: SS-03

Matrix: SOIL

Percent Solids: 86.9

SDG Name: SH1786

Lab Sample ID: SH1786-003

Concentration Units : mg/Kg drywt

CAS No.	Analyte	Concentration C Q	Μ	DF	Adj. PQL	Adj. MDL
7429-90-5	ALUMINUM, TOTAL	3130	Р	1	16	0.37
7440-36-0	ANTIMONY, TOTAL	0.42 U <mark></mark>	Р	1	0.42	0.037
7440-38-2	ARSENIC, TOTAL	1.44 <mark>U</mark>	Р	1	0.42	0.036
7440-39-3	BARIUM, TOTAL	5.72	Р	1	0.26	0.013
7440-41-7	BERYLLIUM, TOTAL	0.10 J	Р	1	0.26	0.0036
7440-43-9	CADMIUM, TOTAL	0.069 J	Р	1	0.26	0.0041
7440-47-3	CHROMIUM, TOTAL	4.54 🝼 🚽	Р	1	0.52	0.014
7440-48-4	COBALT, TOTAL	0.47 J	Р	1	0.52	0.015
7440-50-8	COPPER, TOTAL	2.59	Р	1	1.3	0.084
7439-89-6	IRON, TOTAL	4470	Ρ	1	5.2	0.73
7439-92-1	LEAD, TOTAL	9.16	Р	1	0.26	0.045
7439-95-4	MAGNESIUM, TOTAL	390 🤸	Р	1	5.2	0.36
7439-96-5	MANGANESE, TOTAL	23.7 🔨	Ρ	1	0.26	0.084
7439-97-6	MERCURY, TOTAL	0.015 J	CV	1	0.032	0.0049
7439-98-7	MOLYBDENUM, TOTAL	0.16 J	Р	1	0.52	0.026
7440-02-0	NICKEL, TOTAL	1.74	Р	1	0.52	0.023
7782-49-2	SELENIUM, TOTAL	0.52 U	Р	1	0.52	0.089
7440-22-4	SILVER, TOTAL	0.065 J	Р	1	0.52	0.014
7440-28-0	THALLIUM, TOTAL	0.78 U	Р	1	0.78	0.045
7440-62-2	VANADIUM, TOTAL	7.42	Р	1	0.52	0.019
7440-66-6	ZINC, TOTAL	17.7	Р	1	1.0	0.089
7440-67-7	ZIRCONIUM, TOTAL	5.5 U	Р	1	5.5	1.1

X 410/14

Lab Name: Katahdin Analytical Services

Client Field ID: SS-04

Matrix: SOIL

Percent Solids: 81.4

SDG Name: SH1786

Lab Sample ID: SH1786-004

Concentration Units : mg/Kg drywt

CAS No.	Analyte	Concentration C Q	Μ	DF	Adj. PQL	Adj. MDL
7429-90-5	ALUMINUM, TOTAL	3270	Р	1	22	0.52
7440-36-0	ANTIMONY, TOTAL	0.58 US	Р	1	0.58	0.051
7440-38-2	ARSENIC, TOTAL	1.64 🔥	Р	1	0.58	0.049
7440-39-3	BARIUM, TOTAL	8.87	Р	1	0.36	0.018
7440-41-7	BERYLLIUM, TOTAL	0.10 J	Р	1	0.36	0.0049
7440-43-9	CADMIUM, TOTAL	0.374	Р	1	0.36	0.0057
7440-47-3	CHROMIUM, TOTAL	4.62 💋	Р	1	0.73	0.019
7440-48-4	COBALT, TOTAL	0.44 J	Р	1	0.73	0.021
7440-50-8	COPPER, TOTAL	7.14	Р	1	1.8	0.12
7439-89-6	IRON, TOTAL	5380	Р	1	7.3	1.0
7439-92-1	LEAD, TOTAL	18.3	Р	1	0.36	0.063
7439-95-4	MAGNESIUM, TOTAL	546 🔨	Р	1	7.3	0.49
7439-96-5	MANGANESE, TOTAL	33.0 3	Р	1	0.36	0.12
7439-97-6	MERCURY, TOTAL	0.018 J	CV	1	0.036	0.0055
7439-98-7	MOLYBDENUM, TOTAL	0.20 J	Р	1	0.73	0.036
7440-02-0	NICKEL, TOTAL	2.02	Р	1	0.73	0.032
7782-49-2	SELENIUM, TOTAL	0.19 J	Р	1	0.73	0.12
7440-22-4	SILVER, TOTAL	0.075 J	Р	1	0.73	0.020
7440-28-0	THALLIUM, TOTAL	1.1 U	Р	1	1.1	0.062
7440-62-2	VANADIUM, TOTAL	8.07	Р	1	0.73	0.027
7440-66-6	ZINC, TOTAL	47.1	Р	1	1.4	0.12
7440-67-7	ZIRCONIUM, TOTAL	7.1 U	Р	1	7.1	1.4

Comments:

Dertholy

FORM I - IN

Lab Name: Katahdin Analytical ServicesCMatrix: SOILSPercent Solids: 80.8L

Client Field ID:SS-05SDG Name:SH1786

Lab Sample ID: SH1786-005

Concentration Units : mg/Kg drywt

CAS No.	Analyte	Concentration C Q	М	DF	Adj. PQL	Adj. MDL
7429-90-5	ALUMINUM, TOTAL	2250	Р	1	23	0.54
7440-36-0	ANTIMONY, TOTAL	0.88 J	Р	3	1.8	0.16
7440-38-2	ARSENIC, TOTAL	21.2	Р	3	1.8	0.16
7440-39-3	BARIUM, TOTAL	9.50	Р	1	0.38	0.019
7440-41-7	BERYLLIUM, TOTAL	0.063 J	Р	1	0.38	0.0052
7440-43-9	CADMIUM, TOTAL	1.1 J	Ρ	3	1.1	0.018
7440-47-3	CHROMIUM, TOTAL	36.0 🔨	Р	3	2.3	0.060
7440-48-4	COBALT, TOTAL	6.93	Р	3	2.3	0.066
7440-50-8	COPPER, TOTAL	129	Р	3	5.7	0.37
7439-89-6	IRON, TOTAL	47200	Р	3	23	3.2
7439-92-1	LEAD, TOTAL	74.4	Р	3	1.1	0.20
7439-95-4	MAGNESIUM, TOTAL	287 5	Р	3	23	1.6
7439-96-5	MANGANESE, TOTAL	185 🤸	Р	3	1.1	0.37
7439-97-6	MERCURY, TOTAL	0.021 J	CV	1	0.039	0.0061
7439-98-7	MOLYBDENUM, TOTAL	5.92	Р	1	0.76	0.038
7440-02-0	NICKEL, TOTAL	65.0	Р	3	2.3	0.10
7782-49-2	SELENIUM, TOTAL	2.3 U	Р	3	2.3	0.39
7440-22-4	SILVER, TOTAL	0.32 J	Р	3	2.3	0.062
7440-28-0	THALLIUM, TOTAL	3.4 U	Р	3	3.4	0.20
7440-62-2	VANADIUM, TOTAL	6.74	Р	3	2.3	0.085
7440-66-6	ZINC, TOTAL	123	Р	1	1.5	0.13
7440-67-7	ZIRCONIUM, TOTAL	6.4 U	Р	1	6.4	1.3

Jon High

Lab Name: Katahdin Analytical Services	Client Field ID:	SS-06
Matrix: SOIL	SDG Name:	SH1786
Percent Solids: 84.7	Lab Sample ID	SH1786-006

Concentration Units : mg/Kg drywt

CAS No.	Analyte	Concentration C Q	Μ	DF	Adj. PQL	Adj. MDI
7429-90-5	ALUMINUM, TOTAL	5170	Р	1	20	0.48
7440-36-0	ANTIMONY, TOTAL	0.54 U≾	Р	1	0.54	0.048
7440-38-2	ARSENIC, TOTAL	2.73	Ρ	1	0.54	0.046
7440-39-3	BARIUM, TOTAL	20.5	Р	1	0.34	0.017
7440-41-7	BERYLLIUM, TOTAL	0.18 J	Р	1	0.34	0.0046
7440-43-9	CADMIUM, TOTAL	0.14 J	Р	1	0.34	0.0054
7440-47-3	CHROMIUM, TOTAL	5.323	Р	1	0.68	0.018
7440-4 8- 4	COBALT, TOTAL	0.752	Р	1	0.68	0.020
7440-50-8	COPPER, TOTAL	11.8	Р	1	1.7	0.11
7439-89-6	IRON, TOTAL	7710	Р	1	6.8	0.95
7439-92 - 1	LEAD, TOTAL	22.2	Р	1	0.34	0.059
7439-95-4	MAGNESIUM, TOTAL	6565	Р	1	6.8	0.46
7439-96-5	MANGANESE, TOTAL	62.05	Р	1	0.34	0.11
7439-97-6	MERCURY, TOTAL	0.018 J	CV	1	0.038	0.0059
7439-98-7	MOLYBDENUM, TOTAL	0.28 J	Р	1	0.68	0.034
7440-02-0	NICKEL, TOTAL	2.43	Р	1	0.68	0.030
7782-49-2	SELENIUM, TOTAL	0.13 J	Р	1	0.68	0.12
7440-22-4	SILVER, TOTAL	0.10 J	Р	1	0.68	0.018
7440-28-0	THALLIUM, TOTAL	1.0 U	Р	1	1.0	0.059
7440-62-2	VANADIUM, TOTAL	9.75	Р	1	0.68	0.025
7440-66-6	ZINC, TOTAL	28.9	Р	1	1.4	0.12
7440-67-7	ZIRCONIUM, TOTAL	6.5 U	Р	1	6.5	1.3

1At 4/10/14

Lab Name: Katahdin Analytical Services

Client Field ID: SS-07 SDG Name: SH1786

Matrix: SOIL

Percent Solids: 83.7

Lab Sample ID: SH1786-007

Concentration Units : mg/Kg drywt

CAS No.	Analyte	Concentration C	Q	Μ	DF	Adj. PQL	Adj. MDL
7429-90-5	ALUMINUM, TOTAL	3660	N	Р	1	23	0.54
7440-36-0	ANTIMONY, TOTAL	0.099 J	Ν	Р	1	0.60	0.053
7440-38-2	ARSENIC, TOTAL	1.70 💙		Р	1	0.60	0.051
7440-39-3	BARIUM, TOTAL	12.5		Р	1	0.38	0.019
7440-41-7	BERYLLIUM, TOTAL	0.13 J		Р	1	0.38	0.0051
7440-43-9	CADMIUM, TOTAL	0.22 J		Р	1	0.38	0.0060
7440-47-3	CHROMIUM, TOTAL	12.2 🔨	Ν	Р	1	0.76	0.020
7440-48-4	COBALT, TOTAL	1.02		Р	1	0.76	0.022
7440-50-8	COPPER, TOTAL	4.42		Р	1	1.9	0.12
7439 - 89-6	IRON, TOTAL	5610	Ν	Р	1	7.6	1.1
7439-92-1	LEAD, TOTAL	18.7		Р	1	0.38	0.066
7439-95-4	MAGNESIUM, TOTAL	1040 🤨	Ν	Р	1	7.6	0.51
7439-96-5	MANGANESE, TOTAL	43.3 ෮	Ν	Р	1	0.38	0.12
7439-97-6	MERCURY, TOTAL	0.024 J		CV	1	0.026	0.0041
7439-98-7	MOLYBDENUM, TOTAL	0.093 J		Р	1	0.76	0.038
7440-02-0	NICKEL, TOTAL	3.79		Р	1	0.76	0.033
7782-49-2	SELENIUM, TOTAL	0.76 U		Р	1	0.76	0.13
7440-22-4	SILVER, TOTAL	0.095 J		Р	1	0.76	0.020
7440-28-0	THALLIUM, TOTAL	1.1 U		Р	1	1.1	0.065
7440-62-2	VANADIUM, TOTAL	9.93		Р	1	0.76	0.028
7440-66-6	ZINC, TOTAL	30.7		Р	1	1.5	0.13
7440 - 67-7	ZIRCONIUM, TOTAL	9.0 U		Р	1	9.0	1.8

Comments:

All y lider

FORM I - IN

Lab Name: Katahdin Analytical Services Matrix: SOIL Percent Solids: 81.6

Client Field ID: SS-08 SDG Name: SH1786

Lab Sample ID: SH1786-008

Concentration Units : mg/Kg drywt

CAS No.	Analyte	Concentration C Q	Μ	DF	Adj. PQL	Adj. MDL
7429-90-5	ALUMINUM, TOTAL	3330	Р	1	24	0.58
7440-36-0	ANTIMONY, TOTAL	0.65 U <mark>S</mark>	Р	1	0.65	0.057
7440-38-2	ARSENIC, TOTAL	1.44 💙	Р	1	0.65	0.055
7440-39-3	BARIUM, TOTAL	13.7	Р	1	0.40	0.020
7440-41-7	BERYLLIUM, TOTAL	0.092 J	Р	1	0.40	0.0055
7440-43-9	CADMIUM, TOTAL	0.32 J	Р	1	0.40	0.0064
7440-47-3	CHROMIUM, TOTAL	4.30 🖌	Р	1	0.81	0.021
7440-48-4	COBALT, TOTAL	0.35 J	Р	1	0.81	0.024
7440-50-8	COPPER, TOTAL	7.24	Р	1	2.0	0.13
7439-89-6	IRON, TOTAL	5180	Р	1	8.1	1.1
7439-92-1	LEAD, TOTAL	14.9	Р	1	0.40	0.071
7439-95-4	MAGNESIUM, TOTAL	318 3	Р	1	8.1	0.55
7439-96-5	MANGANESE, TOTAL	26.0 5	Р	1	0.40	0.13
7439-97-6	MERCURY, TOTAL	0.016 J	CV	1	0.029	0.0045
7439-98-7	MOLYBDENUM, TOTAL	0.29 J	Р	1	0.81	0.041
7440-02-0	NICKEL, TOTAL	2.10	Р	1	0.81	0.036
7782-49-2	SELENIUM, TOTAL	0.20 J	Р	1	0.81	0.14
7440-22-4	SILVER, TOTAL	0.066 J	Р	1	0.81	0.022
7440-28-0	THALLIUM, TOTAL	1.2 U	Р	1	1.2	0.070
7440-62-2	VANADIUM, TOTAL	7.69	Р	1	0.81	0.030
7440-66-6	ZINC, TOTAL	45.6	Р	1	1.6	0.14
7440-67-7	ZIRCONIUM, TOTAL	8.6 U	Р	1	8.6	1.7

Allywork

Lab Name: Katahdin Analytical Services Matrix: SOIL

Percent Solids: 86.7

Client Field ID: SS-03-D SDG Name: SH1786

Lab Sample ID: SH1786-009

Concentration Units : mg/Kg drywt

CAS No.	Analyte	Concentration C Q	Μ	DF	Adj. PQL	Adj. MDL
7429-90-5	ALUMINUM, TOTAL	3300	Р	1	21	0.49
7440-36-0	ANTIMONY, TOTAL	0.55 U 4	Р	1	0.55	0.048
7440-38-2	ARSENIC, TOTAL	1.44 🗸	Р	1	0.55	0.047
7440-39-3	BARIUM, TOTAL	6.31	Р	1	0.34	0.017
7440-41-7	BERYLLIUM, TOTAL	0.11 J	Р	1	0.34	0.0047
7440-43-9	CADMIUM, TOTAL	0.049 J	Р	1	0.34	0.0055
7440-47-3	CHROMIUM, TOTAL	4.53 🗹	Р	1	0.69	0.018
7440-48-4	COBALT, TOTAL	0.44 J	Р	1	0.69	0.020
7440-50-8	COPPER, TOTAL	2.43	Р	1	1.7	0.11
7439-89-6	IRON, TOTAL	4520	Р	1	6.9	0.97
7439-92-1	LEAD, TOTAL	8.46	Р	1	0.34	0.060
7439-95-4	MAGNESIUM, TOTAL	360 🗲	Р	1	6.9	0.47
7439-96-5	MANGANESE, TOTAL	23.8 🖌	Р	1	0.34	0.11
7439-97-6	MERCURY, TOTAL	0.015 J	CV	1	0.027	0.0042
7439-98-7	MOLYBDENUM, TOTAL	0.13 J	Р	1	0.69	0.035
7440-02-0	NICKEL, TOTAL	1.62	Р	1	0.69	0.030
7782-49-2	SELENIUM, TOTAL	0.16 J	Р	1	0.69	0.12
7440-22-4	SILVER, TOTAL	0.057 J	Р	1	0.69	0.019
7440-28-0	THALLIUM, TOTAL	1.0 U	Р	1	1.0	0.059
7440-62-2	VANADIUM, TOTAL	7.48	Р	1	0.69	0.026
7440-66-6	ZINC, TOTAL	11.7	Р	1	1.4	0.12
7440-67-7	ZIRCONIUM, TOTAL	6.3 U	Р	1	6.3	1.3

Al y aller

ANALYTICAL SERVICES

Report of Analytical Results

Sample Description	Client: Lisa Kammer Weston Solutions, Inc. 45 Constitution Avenue Concord,NH 03301
Matrix	Lab Sample ID: SH1786-1 Report Date: 01-APR-14 Client PO: 0085115 Project: Nantucket 1 SDG: SH1786
Date Sampled	mple ID: SH1786-1 ort Date: 01-APR-14 lient PO: 0085115 Project: Nantucket Memorial Ain SDG: SH1786
Date Received	irport

SS-01

SL

20-MAR-14

21-MAR-14

Parameter	Result	Adj PQL	Adj MDL	Adj PQL Adj MDL Anal. Method QC Batch	QC Batch	Analysis Date	Prep. Method Prep. Date	Prep. Date	Analyst Footnote	Footnotes
Total Cyanide	U0.60 mg/Kgdrywt	0.60	0.27	SW846 M9012B	WG140470	SW846 M9012B WG140470 26-MAR-14 13:26:24	SW846 M9012	N/A	LNP	
Total Kjeldahl Nitrogen	780 mg/Kgdrywt	40.	17.	EPA 351.2	WG140495	26-MAR-14 17:41:02	EPA 351.2	26-MAR-14	DW	
Total Solids	83. %	-		SM2540G	WG140362	WG140362 25-MAR-14 10:51:41	SM2540G	SM2540G 24-MAR-14	ZS	

0200000 290 Services A000050	Analytic	Katahdin
------------------------------	----------	----------

G 600 Technology Way P.O. Box 540, Scarborough, ME 04070

http://katahdinlab.com sales@katahdinlab.com

Lachiolici

ANALYTICAL SERVICES Katahdin

Report of Analytical Results

Sample Description	Client: Lisa Kammer Weston Solutions, Inc. 45 Constitution Avenue Concord, NH 03301	
Matrix	Lab Sample ID: SH1786-2 Report Date: 01-APR-14 Client PO: 0085115 Project: Nantucket 1 SDG: SH1786	
Matrix Date Sampled	Imple ID: SH1786-2 ort Date: 01-APR-14 lient PO: 0085115 Project: Nantucket Memorial Airport SDG: SH1786	
Date Received	irport	

SS-02

SL

20-MAR-14

21-MAR-14

Parameter	Result	Adj PQL	Adj MDL	Adj PQL Adj MDL Anal. Method QC Batch	QC Batch	Analysis Date	Prep. Method Prcp. Date	Prcp. Date	Analyst Footnotes	Footnotes
Total Cyanide	U0.SO	0,50	0.22	SW846 M9012B	WG140470	SW846 M9012B WG140470 26-MAR-14 13:26:24	SW846 M9012	N/A	LNP	
Total Kjeldahl Nirrogen	1200 1200 tng/Kgdrywt	50.	21.	EPA 351.2	WG140495	WG140495 26-MAR-14 17:42:07	EPA 351.2 26-MAR-14	26-MAR-14	DW	
Total Solids	82. %	цца С		SM2540G	WG140362	WG140362 25-MAR-14 10:51:55	SM2540G	SM2540G 24-MAR-14 ZS	ZS	

Thrulia

http://katahdinlab.com sales@katahdinlab.com

S.

~	5
14	C
4	7
0	
6	

ANALYTICAL SERVICES Katahdin

inelac Cert No E87604

Parameter	SS-03	Sample Description	Client: Lisa Kammer Weston Soluti 45 Constitutio Concord,NH (
Result		ion	Lisa Kammer Weston Solutions, Inc. 45 Constitution Avenue Concord,NH 03301
Adi POL			£.
Adi MDL			
Adi POL Adi MDL Anal Method Of Reich			
	SL	M	Lab Sample Report L Client Pro S
Analysis Data Pron Mathad	20-MAR-14	Matrix Date Sampled	Lab Sample ID: SH1786-3 Report Date: 01-APR-14 Client PO: 0085115 Project: Nantucket Memorial Airport SDG: SH1786
Pron Mathad Pron Data Analyst Foot	21-MAR-14	Date Received	21

Parameter	Result	Adj PQL	Adj MDL	Adj PQL Adj MDL Anal. Method	QC Batch	Analysis Date	Prep. Method Prep. Date Analyst Footnote	Prep. Date	Analyst	Footnotes
Total Cyanide	U0.50	0.50	0.22	SW846 M9012B	WG140470	SW846 M9012B WG140470 26-MAR-14 13:26:24	SW846 M9012	N/A	LNP	
Total Kjeldaht Nitrogen	570 mg/Kgdrywt	43,	18.	EPA 351.2	WG140495	WG140495 26-MAR-14 17:33:27	EPA 351.2	26-MAR-14	DW	
Total Solids	87. %	1		SM2540G	WG140362	25-MAR-14 10:52:05	SM2540G	2540G 24-MAR-14	ZS	

inelac Cert No E87604

ANALYTICAL SERVICES

Katahdin

arameter	SS-04	Sample Description		Concord,NH 03301	45 Constitution Avenue	Weston Solutions, Inc.	Client: Lisa Kammer	
Result	ł	Ħ		H 03301	ition Avenu	lutions, Inc	ler	
Adj PQL Adj MDL					IC.			
Adj MDL								
Anal. Method							a	
QC Batch				H	Clie	Repor	Lab Sample ID:	
Analy	SL	Matrix	SDG:	roject:	Client PO:	t Date:		
Analysis Date	20-MAR-14	Date S	SH1786	Nantucket N	0085115	Report Date: 01-APR-14	SH1786-4	
Prep. Method	R-14	Date Sampled		Project: Nantucket Memorial Airport				
	21-MAR-14	Date Received		Э т				
Prep. Date Analyst	4	ived						
뉙								

Parameter	Result	Adj PQL	Adj PQL Adj MDL	Anal. Method QC Batch	QC Batch	Analysis Date	Prep. Method Prep. Date Analyst Footnote	Prep. Date	Analyst	Footnotes
Total Cyanide	U0.50 mg/Kgdrywt	0.50	0.22	SW846 M9012B	WG140470	SW846 M9012B WG140470 26-MAR-14 13:26:24	SW846 M9012 N/A	N/A	LNP	
Total Kjeldahl Nitrogen	920 mg/Kgdrywt	40.	17.	EPA 351.2	WG140495	WG140495 26-MAR-14 17:34:32	EPA 351.2 26-MAR-14	26-MAR-14	DW	
Total Solids	81, %	H		SM2540G	WG140362	WG140362 25-MAR-14 10:52:15	SM2540G 24-MAR-14	24-MAR-14	ZS	

<u>Sample Description</u> SS-05	Client: Lisa Kammer Weston Solutions, Inc. 45 Constitution Avenue Concord,NH 03301
<u>Matrix</u> SL	Lab Sample ID: SH1786-5 Report Date: 01-APR-14 Client PO: 0085115 Project: Nantucket h SDG; SH1786
20-MAR-14	de ID: SH1786-5 Date: 01-APR-14 If PO: 0085115 oject: Nantucket Memorial Airpor SDG: SH1786
Date Received 21-MAR-14	irport

Total Solids	Total Kjeldahl Nitrogen	Total Cyanide	Parameter
81. %	1100 mg/Kgdrywt	J0.45 mg/Kgdrywt	Result
1	37	0.60	Adj PQL
	16.	0.27	Adj PQL Adj MDL
SM2540G	EPA 351.2	SW846 M9012B	Anal. Method QC Batch
WG140362	WG140495	WG140470	QC Batch
WG140362 25-MAR-14 10:52:26	WG140495 26-MAR-14 17:35:37	SW846 M9012B WG140470 26-MAR-14 13:26:24	Analysis Date
SM2540G	EPA 351.2	SW846 M9012	Prep. Method Prep. Date Analyst Footnotes
SM2540G 24-MAR-14	26-MAR-14	12 N/A	Prep. Date
ZS	DW	LNP	Analyst
			Footnotes

ANALYTICAL SERVICES Katahdin

Report of Analytical Results

SS-06	Sample Description	Client: Lisa Kammer Weston Solutions, Inc. 45 Constitution Avenue Concord,NH 03301
SL	Matrix	Lab Sample ID: SH1786-6 Report Date: 01-APR-14 Client PO: 0085115 Project: Nantucket SDG: SH1786
20-MAR-14	Date Sampled	Imple ID:SH1786-6ort Date:01-APR-14lient PO:0085115Project:Nantucket Memorial AirporSDG:SH1786
21-MAR-14	Date Received	iport

Parameter	Result	Adj PQL	Adj MDL	Adj PQL Adj MDL Anal. Method	QC Batch	Analysis Date	Prep. Method Prep. Date Analyst Footnote	Prep. Date	Analyst	Footnotes
Total Cyanide	U0.50	0.50	0,22	SW846 M9012B	WG140470	SW846 M9012B WG140470 26-MAR-14 13:26:24	SW846 M9012	N/A	LNP	and the strength of
Total Kjeldahl Nitrogen	790 mg/Kgdrywt	46.	20.	EPA 351.2	WG140495	26-MAR-14 17:32:22	EPA 351.2	26-MAR-14 DW	DW	
Total Solids	85. %	1		SM2540G	WG140362	WG140362 25-MAR-14 10:52:35	SM2540G	24-MAR-14	ZS	

Contraction of the second seco

•

http://katahdinlab.com sales@katahdinlab.com

4

۹

http://kztahdinlab.com sales@katahdinlab.com

ANALYTICAL SERVICES Katahdin

Report of Analytical Results

SS-07	Sample Description	Client: Lisa Kammer Weston Solutions, Inc. 45 Constitution Avenue Concord,NH 03301
SL	Matrix	Lab Sample ID: SH1786-7 Report Date: 01-APR-1 Client PO: 0085115 Project: Nantucket SDG: SH1786
20-MAR-14	Date Sampled	mple ID:SH1786-7ort Date:01-APR-14lient PO:0085115Project:Nantucket Memorial AirportSDG:SH1786
21-MAR-14	Date Received	irport

Parameter	Result	Adj PQL	Adj MDL	Adj PQL Adj MDL Anal, Method QC Batch	QC Batch	Analysis Date	Prep. Method Prep. Date Analyst Footnote:	Prep. Date	Analyst	Footnotes
Total Cyanide	U0.55	0.55	0.24	SW846 M9012B	WG140470	SW846 M9012B WG140470 26-MAR-14 13:26:24 SW846 M9012	SW846 M9012	N/A	LNP	
Total Kjeldahl Nitrogen	720 mg/Kgdrywt	43.	18.	EPA 351.2	WG140495	WG140495 26-MAR-14 17:22:26	EPA 351,2	51,2 26-MAR-14	DW	
Total Solids	84. %	1		SM2540G	WG140362	WG140362 25-MAR-14 10:52:45	SM2540G 24-MAR-14	24-MAR-14	ZS	

000 Lectrolog Asocial Services Andrews BEO 900 A Social Services Andrews B

SS-08	Sample Description	Client: Lisa Kammer Weston Solutions, Inc. 45 Constitution Avenue Concord,NH 03301
SL	Matrix	Lab Sample ID: SH1786-8 Report Date: 01-APR-1- Client PO: 0085115 Project: Nantucket SDG: SH1786
20-MAR-14	Date Sampled	mple ID:SH1786-8ort Date:01-APR-14lient PO:0085115Project:Nantucket Memorial Airpor SDG:SDG:SH1786
21-MAR-14	Date Received	iport

Parameter	Result	Adj PQL	Adj MDL	Adj PQL Adj MDL Anal. Method QC Batch	QC Batch	Analysis Date	Prep. Method Prep. Date Analyst Footnote	Prep. Date	Analyst	Footnot
Total Cyanide	U0.50 mg/Kgdrvwt	0.50	0.22	SW846 M9012B WG140470	WG140470	26-MAR-14 13:26:24	SW846 M9012	N/A	LNP	
Total Kjeldahl Nitrogen	1000 mg/Kgdrywt	40,	17.	EPA 351.2	WG140495	26-MAR-14 17:00:30	EPA 351.2	26-MAR-14	DW	
Total Solids	82, %	I		SM2540G	WG140362	WG140362 25-MAR-14 10:52:58	SM2540G	SM2540G 24-MAR-14 ZS	ZS	

7000057	Services	Analytical	Katahdin
---------	----------	------------	----------

600 Technology Way P.O. Box 540, Scarborough, ME 04070

Millelin

http://katahdinlab.com sales@katahdinlab.com

Sample Description	Client: Lisa Kammer Weston Solutions, Inc. 45 Constitution Avenue Concord,NH 03301	
Matrix	Lab Sample ID: SH1786-9 Report Date: 01-APR-14 Client PO: 0085115 Project: Nantucket SDG: SH1786	
Date Sampled	mple ID: SH1786-9 ort Date: 01-APR-14 lient PO: 0085115 Project: Nantucket Memorial Airp SDG: SH1786	
Date Received	Lirport (

SS-03-D

SL

20-MAR-14

21-MAR-14

Parameter	Result	Adj PQL	Adj MDL	Adj PQL Adj MDL Anal. Method	QC Batch	Analysis Date	Prep. Method Prep. Date Analyst Footnotes	Prep. Date	Analyst	Footnotes
Total Cyanide	U0.50	0.50	0.22	SW846 M9012B	WG140470	SW846 M9012B WG140470 26-MAR-14 16:48:00	SW846 M9012	N/A	LNP	
Total Kjeldahl Nitrogen	570 mg/Kgdrywt	37.	16.	EPA 351.2	WG140498	EPA 351.2 WG140498 27-MAR-14 11:45:28	EPA 351,2	26-MAR-14	DW	
Total Solids	87. %	1		SM2540G	WG140362	WG140362 25-MAR-14 10:53:11	SM2540G	SM2540G 24-MAR-14 ZS	ZS	

http://katahdinlab.com sales@katahdinlab.com

i.

N)

ALS Group USA, Corp. dba ALS Environmental

Analytical	Results
Analytical	results

Client:	Katahdin Analytical Services	Service Request:	K1402957
Project:	NMA/SH1786	Date Collected:	03/24/2014
Sample Matrix:	Soil	Date Received:	03/25/2014

Nitrophenols by HPLC

Sample Name: Lab Code:	SS-01 K1402957-001								Units: mg/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8330M					Dilution	Date	Date	Level: Low Extraction	
Analyte Name		Result (Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Picric Acid		ND U	U	0.12	0.027	1	03/29/14	03/30/14	KWG1402657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,6-Dinitro-4-methylphenol	104	47-122	03/30/14	Acceptable	

Comments:

SuperSet Reference:

REVISED 12:49 pm, Apr 14, 2014

Merged

Form 1A - Organic

ALS Group USA, Corp. dba ALS Environmental

Analytical Results

	Third your Accounts		
Client:	Katahdin Analytical Services	Service Request:	K1402957
Project:	NMA/SH1786	Date Collected:	03/24/2014
Sample Matrix:	Soil	Date Received:	03/25/2014

Nitrophenols by HPLC

Sample Name: Lab Code:	SS-02 K1402957-002								Units: mg/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8330M								Level: Low	
Analyte Name		Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND	U	0.13	0.027	1	03/29/14	03/30/14	KWG1402657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,6-Dinitro-4-methylphenol	99	47-122	03/30/14	Acceptable	

Comments:

REVISED 12:49 pm, Apr 14, 2014

SuperSet Reference:

Printed: 04/14/2014 12:02:12 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Analytical Results

Client:	Katahdin Analytical Services	Service Request:	K1402957
Project:	NMA/SH1786	Date Collected:	03/24/2014
Sample Matrix:	Soil	Date Received:	03/25/2014

Nitrophenols by HPLC

Sample Name: Lab Code:	SS-03 K1402957-003							Units: mg/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8330M							Level: Low	
Analyte Name		Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND U	0.12	0.025	1	03/29/14	03/30/14	KWG1402657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,6-Dinitro-4-methylphenol	103	47-122	03/30/14	Acceptable	

Comments:

1

Merged

4/15/14

REVISED

12:49 pm, Apr 14, 2014

Analytical Results

Client:	Katahdin Analytical Services	Service Request:	K1402957
Project:	NMA/SH1786	Date Collected:	03/24/2014
Sample Matrix:	Soil	Date Received:	03/25/2014

Nitrophenols by HPLC

		З	Co	ntrol	D	ate					
Pierie Acid		ND	U		0.12	0.026	1	03/29/14	03/30/14	KWG1402657	
Analyte Name		Result	Q		MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Extraction Method: Analysis Method:	METHOD 8330M									Level: Low	
Sample Name: Lab Code:	SS-04 K1402957-004									Units: mg/Kg Basis: Dry	

2,6-Dinitro-4-methylphenol 100 47-122 03/30/14 Acceptable

Comments:

SuperSet Reference:

415/14

Merged

Form 1A - Organic

Analytical Results

Client:	Katahdin Analytical Services	Service Request:	K1402957
Project:	NMA/SH1786	Date Collected:	03/24/2014
Sample Matrix:	Soil	Date Received:	03/25/2014

Nitrophenols by HPLC

Sample Name: Lab Code:	SS-05 K1402957-005					Units: mg/Kg Basis: Dry
Extraction Method: Analysis Method:	METHOD 8330M					Level: Low
			Dilution	Date	Date	Extraction

Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Picric Acid	ND U	0.13	0.028	1	03/29/14	03/30/14	KWG1402657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2,6-Dinitro-4-methylphenol	98	47-122	03/30/14	Acceptable

Comments:

204 Julia

REVISED

12:49 pm, Apr 14, 2014

Analytical Results

Client:	Katahdin Analytical Services	Service Request:	K1402957
Project:	NMA/SH1786	Date Collected:	03/24/2014
Sample Matrix:	Soil	Date Received:	03/25/2014

Nitrophenols by HPLC

Sample Name: Lab Code:	SS-06 K1402957-006							Units: mg/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8330M							Level: Low	
Analyte Name		Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND U	0.12	0.025	1	03/29/14	03/30/14	KWG1402657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,6-Dinitro-4-methylphenol	97	47-122	03/30/14	Acceptable	

Comments:

Merged

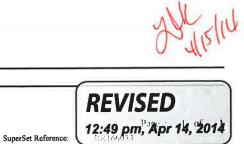
4151

REVISED

12:49 pm, Apr 14, 2014

Analytical Results

Client:	Katahdin Analytical Services	Service Request:	K1402957
Project:	NMA/SH1786	Date Collected:	03/24/2014
Sample Matrix:	Soil	Date Received:	03/25/2014


Nitrophenols by HPLC

Sample Name: Lab Code:	SS-07 K1402957-007				2			Units: mg/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8330M							Level: Low	
Analyte Name		Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND U	0.12	0.026	1	03/29/14	03/30/14	KWG1402657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,6-Dinitro-4-methylphenol	97	47-122	03/30/14	Acceptable	

Comments:

4

Merged

Form 1A - Organic

Analytical Results

j j		
Client: Katahdin Analytical Services	Service Request:	K1402957
Project: NMA/SH1786	Date Collected:	03/24/2014
Sample Matrix: Soil	Date Received:	03/25/2014

Nitrophenols by HPLC

Sample Name: Lab Code:	SS-08 K1402957-008							Units: mg/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8330M							Level: Low	
Analyte Name		Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND U	0.13	0.028	1	03/29/14	03/30/14	KWG1402657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	_
2,6-Dinitro-4-methylphenol	106	47-122	03/30/14	Acceptable	

Comments:

Printed: 04/14/2014 12:02:36 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

22

SuperSet Reference:

Analytical Results

Nitrophenols by HPLC

Sample Name: Lab Code:	SS-03-D K1402957-009								Units: mg/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8330M								Level: Low	
Analyte Name		Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND	U	0.12	0.025	1	03/29/14	03/30/14	KWG1402657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,6-Dinitro-4-methylphenol	99	47-122	03/30/14	Acceptable	

Comments:

Merged

23

Microbac

 Lab Report #:
 L14031356

 Lab Project #:
 3030.002

 Project Name:
 Perchorates

 Lab Contact:
 Emily Yoak

		Certificate	of Analysis		
Sample #:	L14031356-01	PrePrep Method:	N/A	Instrument:	LCMS1
Client ID:	SS-01	Prep Method:	6850	Prep Date:	03/26/2014 10:30
Matrix:	Soil	Analytical Method:	6850	Cal Date:	12/18/2013 19:20
Workgroup #:	WG468631	Analyst:	JWR	Run Date:	03/26/2014 15:21
Collect Date:	03/20/2014 12:00	Dilution:	1	File ID:	1LM.LM24115
Sample Tag:	01	Units:	ug/kg	Percent Solid:	83.4

Analyte	CAS #	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0		U	2.34	1.17
U Analyte was not detected	. The concentration is below the reported L	.OD.			

Sample #:	L14031356-02	PrePrep Method:	N/A	Instrument:	LCMS1	
Client ID:	SS-02	Prep Method:	6850	Prep Date:	03/26/2014 10:30	
Matrix:	Soil	Analytical Method:	6850	Cal Date:	12/18/2013 19:20	
Workgroup #:	WG468631	Analyst:	JWR	Run Date:	03/26/2014 15:40	
Collect Date:	03/20/2014 12:15	Dilution:	1	File ID:	1LM.LM24116	
Sample Tag:	01	Units:	ug/kg	Percent Solid:	80.8	

	Analyte	CAS#	Result	Qual	LOQ	LOD					
Perchlorate		14797-73-0		U	2.39	1.19					
U	Analyte was not detected. The concentration is below the reported LOD.										

Sample #:	L14031356-03	PrePrep Method:	N/A	Instrument:	LCMS1
Client ID:	SS-03	Prep Method:	6850	Prep Date:	03/26/2014 10:30
Matrix:	Soit	Analytical Method:	6850	Cal Date:	12/18/2013 19:20
Workgroup #:	WG468631	Analyst:	JWR	Run Date:	03/26/2014 15:59
Collect Date:	03/20/2014 12:30	Dilution:	1	File ID:	1LM.LM24117
Sample Tag:	01	Units:	ug/kg	Percent Solid:	84.2

	Analyte	CAS#	Result	Qual	LOQ	LOD 1.16	
Perchlorate		14797-73-0		U	2.33		
U	Analyte was not detected. The con	centration is below the reported L	.OD.				

Sample #:	L14031356-04	PrePrep Method:	N/A	Instrument:	LCMS1	
Client ID:	SS-04	Prep Method:	6850	Prep Date:	03/26/2014 10:30	
Matrix:	Soil	Analytical Method:	6850	Cal Date:	12/18/2013 19:20	
Workgroup #:	WG468631	Analyst:	JWR	Run Date:	03/26/2014 16:37	
Collect Date:	03/20/2014 12:45	Dilution:	1	File ID:	1LM.LM24119	
Sample Tag:	01	Units:	ug/kg	Percent Solid:	81.0	

Page 1 of 4

Generated at Mar 28, 2014 16:12

Jellyw

Microbac

 Lab Report #:
 L14031356

 Lab Project #:
 3080.002

 Project Name:
 Perchlorates

 Lab Contact:
 Emily Yoak

	Analyte		CAS#	Result	Qual	LOQ	LOD			
Perchlorate			14797-73-0		U	2.43	1.21			
U A	nalyte was not detected. The	e concentration is b	elow the reported L	.OD.						
Sample #	: L14031356-05	PrePrej	Method: N/A		Instrument:	LCMS1				
Client ID:	: SS-05	Prej	p Method: 6850		Prep Date:	03/26/2014 10:	30			
Matrix	:: Soil	Analytica	Method: 6850		Cal Date:	12/18/2013 19:	20			
Workgroup #	: WG468631		Analyst: JWR		Run Date:	03/26/2014 16:	/26/2014 16:56			
Collect Date	: 03/20/2014 12:50		Dilution: 1		File ID:	1LM.LM24120				
Sample Tag	: 01		Units: ug/kg		Percent Solid:	78.9				
	Analyte		CAS#	Result	Qual	LOQ	LOD			
Perchlorate			14797-73-0		U	2.48	1.24			
U A	nalyte was not detected. The	e concentration is b	elow the reported L	.OD.						
Sample #:	L14031356-06	PrePrej	Method: N/A		Instrument:	LCMS1				
Client ID:	SS-06	Pre	Method: 6850		Prep Date:	03/26/2014 10:	30			
Matrix	: Soil	Analytica	Method: 6850		Cal Date:	12/18/2013 19:	20			
Workgroup #	: WG468631		Analyst: JWR		Run Date: 03/26/2014 17:15					
Collect Date	: 03/20/2014 12:55		Dilution: 1		File ID: 1LM.LM24121					
Sample Tag	: 01		Units: ug/kg		Percent Solid: 84.2					
	Analyte		CAS#	Result	Qual	LOQ	LOD			
Perchlorate			14797-73-0		U	2.31	1.16			
U A	nalyte was not detected. The	e concentration is b	elow the reported L	OD.		- 15-12-12-12-12-12-12-12-12-12-12-12-12-12-				
Sample #:	L14031356-07	PrePrep	Method: N/A		Instrument	LCMS1				
Client ID:	SS-07	Prep	Method: 6850		Prep Date:	03/26/2014 10:	30			
Matrix	: Soil	Analytica	i Method: 6850		Cal Date: 12/18/2013 19:20					
Workgroup #	: WG468631		Analyst: JWR		Run Date:	03/26/2014 18:	31			
Collect Date	: 03/20/2014 13:00		Dilution: 1		File ID:	1LM.LM24125				
Sample Tag: 01			Units: ug/kg		Percent Solid: 78.8					
			040 #	Result	Qual	100	LOD			
	Analyte		CAS #	Result	Qua	LOQ	LOL			

Generated at Mar 28, 2014 16:12

Jar

Page 2 of 4

Microbac

 Lab Report #:
 L14031356

 Lab Project #:
 3080.002

 Project Name:
 Perchorates:

 Lab Contact:
 Emily Yoak

	continues and a second s	States States of States of States							
		C	ertificate of Anal	ysis					
Sample #:	L14031356-08	PrePre	Method: N/A		Instrument:	LCMS1			
Client ID:	SS-07	Pre	Method: 6850		Prep Date:	03/26/2014 10:	30		
Matrix:	Soil	Analytica	Method: 6850		Cal Date:	: 12/18/2013 19:20			
Workgroup #:	WG468631		Analyst: JWR	Run Date:	: 03/26/2014 18:49				
Collect Date:	03/20/2014 13:00		Dilution: 1		File ID:	1LM.LM24126			
Sample Tag:	01		Units: ug/kg		Percent Solid:	78.8			
	Analyte		CAS#	Result	Qual	LOQ	LOD		
Perchlorate	4		14797-73-0	2.64		2.47 1.24			
Sample #:	L14031356-09	PrePre	Method: N/A		Instrument:	LCMS1			
Client ID:	SS-07	Pre	Method: 6850		Prep Date:	03/26/2014 10:	30		
Matrix:	Soil	Analytica	I Method: 6850		Cal Date:	12/18/2013 19:	20		
Workgroup #:	WG468631		Analyst: JWR		Run Date:	03/26/2014 19:	08		
Collect Date:	03/20/2014 13:00		Dilution: 1		File ID:	1LM.LM24127			
Sample Tag:	01		Units: ug/kg		Percent Solid:	78.8			
	Analyte		CAS#	Result	Qual	LOQ	LOD		
Perchlorate			14797-73-0	2.52		2.47	1.23		
Sample #: Client ID:	L14031356-10 SS-08	-	Method: N/A Method: 6850	Instrument: Prep Date:	LCMS1 03/26/2014 10::	30			
Matrix:			Method: 6850		Cal Date: 12/18/2013 19:20				
Workgroup #:			Analyst: JWR		Run Date: 03/26/2014 19:27				
	03/20/2014 13:15		Dilution: 1		File ID: 1LM.LM24128				
Sample Tag:			Units: ug/kg		Percent Solid: 79.8				
	Analyte		CAS#	Result	Qual	LOQ	LOD		
Perchlorate			14797-73-0		U	2.44	1.22		
U Ana	alyte was not detected. The	e concentration is b	elow the reported LO	DD.					
Sample #:	L14031356-11	PrePrej	Method: N/A		Instrument:	LCMS1			
Client ID:	SS-03-D	Prej	Method: 6850		Prep Date:	03/26/2014 10:3	30		
Matrix:	Soil	Analytica	Method: 6850		Cal Date:	12/18/2013 19:2	20		
Workgroup #:	WG468631		Analyst: JWR		Run Date:	03/26/2014 16:1	18		
Collect Date:	03/20/2014 12:30		Dilution: 1		File ID:	1LM.LM24118			
Sample Tag:	01		Units: ug/kg		Percent Solid:	85.7			
	Analyte		CAS#	Result	Qual	LOQ	LOD		
Perchlorate			14797-73-0		U	2.28	1.14		
U Ana	alyte was not detected. The								

Page 3 of 4

Generated at Mar 28, 2014 16:12

Jell yeals

Janine Torres

From:
Sent:
To:
Subject:

Tom Rafter <trafter@nantucketairport.com> Tuesday, April 22, 2014 1:27 PM jtorres@nantucketairport.com FW: Nantucket Update (UNCLASSIFIED) 2 readala

-----Original Message-----From: Richard T. Holland [mailto:RHolland@k-plaw.com] Sent: Tuesday, April 22, 2014 1:00 PM To: 'nkarberg@nantucketairport.com'; 'Daniel W. Drake'; 'Tom Rafter' Subject: RE: Nantucket Update (UNCLASSIFIED)

This is good news.

Rick

-----Original Message-----

From: Noah Karberg [mailto:nkarberg@nantucketairport.com] Sent: Tuesday, April 22, 2014 12:50 PM To: 'Kane, Christopher G.'; 'Cunningham, Arthur J.'; Richard T. Holland; 'Daniel W. Drake'; 'Tom Rafter' Subject: FW: Nantucket Update (UNCLASSIFIED) Importance: High

Very timely, no?

Noah J. Karberg

Environmental Coordinator Nantucket Memorial Airport 14 Airport Rd,Unit 1 Nantucket MA 02554 Office/Noise complaint: (508) 325-7531 Fax: (508) 325-5306

facebook.com/ACKairport

-----Original Message-----From: Sullivan, Heather L NAE [mailto:Heather.L.Sullivan@usace.army.mil] Sent: Tuesday, April 22, 2014 11:11 AM To: nkarberg@nantucketairport.com; Charette, Carol A NAE; 'Tom Rafter' Subject: Nantucket Update (UNCLASSIFIED) Classification: UNCLASSIFIED Caveats: NONE

Good morning,

I wanted to give you all a quick update on the Nantucket Airport FUDS project. As promised, we requested that our Headquarters approve and fund the Nantucket Airport Remedial Investigation. We were informed last week

.

that the project request was approved. We are now working to get the

contract awarded prior to the end of our fiscal year (September 30th).

Carol will be setting up a conference call in the near future to discuss the path forward.

Heather

Classification: UNCLASSIFIED Caveats: NONE

Janine Torres

From: Sent: To: Subject: Tom Rafter <trafter@nantucketairport.com> Tuesday, April 22, 2014 9:02 AM jtorres@nantucketairport.com FW: G. J. Smith, Inc Timeline

From: Daniel W. Drake [mailto:ddrake@ackquack.com] Sent: Monday, April 21, 2014 9:42 AM To: 'Geoffrey Smith' Cc: Tom Rafter ; Richard T. Holland Subject: RE: G. J. Smith, Inc Timeline

Mr. Smith,

I will forward your email of April 19, 2014 to be added to the Commissioners' packet for the meeting tomorrow.

I am going on the record to say that there will be no further rehashing by the Commission of events up to now relating to your proposed lease. The Commission's obligation, based on the best information we can get, is to proceed in a manner which we determine to be in the best interests of the Airport, its tenants and, ultimately, the people of Nantucket.

As I have told the people who have telephoned me on your behalf, I am, personally, sympathetic to the very difficult situation in which you find yourself. I reiterate, however, that the implications of the issue at hand go far beyond the proposed lease for G.J. Smith, Inc. and those implications have to be the Commission's point of reference

Clearly, it is to everyone's advantage to keep open the lines of communication but the communication has to be cut off when it becomes repetitive or irrelevant to the issue under consideration. I hope you and your associates will keep this in mind as we move forward.

Regards,

Dan Drake

Daniel W. Drake Chairman Nantucket Memorial Airport Commission

Office: 508-325-7753 Cell: 508-221-0770

From: Geoffrey Smith [mailto:nantucketgeoff@yahoo.com] Sent: Saturday, April 19, 2014 12:04 PM To: <u>ddrake@ackquack.com</u> Subject: G. J. Smith, Inc Timeline

Commissioner Drake,

I have put together a timeline of the past year for your and the commission's review. I would ask that you forward this timeline on to each commission member so we can have a brief and useful meeting on Tuesday. As you will see, it has been a busy year! Together we figured out a solution to the endangered grass situation in July. Together we can figure out a solution to the ordnance discovery that is a win - win. I am begging you and the commission to continue lease negotiations. Very respectfully submitted,

Geoff Smith G. J. Smith, Inc.

G. J. Smith, Inc Nantucket Memorial Airport Lease Timeline 4/19/2014

- GJS Geoffrey J. Smith G. J. Smith, Inc.
- RA Rod Allred, 3RCA Construction, LLC
- DD Dan Drake, Commissioner
- JT Janine Torres, Airport Manager's Secretary
- TMR Thomas M. Rafter, Airport Manager
- CGK Christopher G. Kane, Weston Solutions, Inc.

Video Link of Airport Commission meetings relating to G. J. Smith, Inc.

http://vimeo.com/91604418 1:45:23

Ordnance discovery video link

http://vimeo.com/92358254 1:45

Master Plan for Bunker Road 3-4:

The Airport "Bunker Parcel" located outside the fence to the north of Runway 15/33, accommodates commercial and industrial land uses that are not compatible with the residential nature of other areas on the island. These uses – including an asphalt batch plant, a concrete batch plant, and storage facilities – serve vital island needs in a setting well removed from the village centers and most residential neighborhoods. In return, the use of airport land for commercial purposes provides a source of revenue enabling it to develop financial stability.

http://masterplan.nantucketairport.com/wp-content/uploads/Chp-3-Environmental-Overview.pdf

2/22/13	RFP for Lease due
3/15/13	Award Letter for Parcel G
4/24/13	Request for Surveyed Lot GJS: "When do you plan on having the area surveyed?"
4/25/13	JT: "We are working on procuring a surveyor. Unfortunately it is a slow process."
6/12/13	TMR: "21e are complete and submitted" Video 3:43-3:50
6/18/13	GJS: HDC approved plans for 2 buildings, larger of buildings being 120' X 72' X 30' high
7/9/13	Endangered grass found TMR: "Met today and discussed some potential realignment of some of the leasehold working to address some mitigation efforts." Video 6:35-7:14

7/9/13	JT: "We are still waiting for environmental clearance on your lot from National heritage and are expected a response any day."
7/10/13	GJS: "I'd like to try for 1.25-1.5 acres if we can stay away from endangered grass. This will create a uniform lot size."
7/10/13	JT: "We can do 1.2, but not 1.5 at this time."
7/10/13	JT requested from Paul Santos revision to create current Lease Parcel 9, according to Paul Santos, Nantucket Surveyor's records.
8/13/13	TMR: "Basically move one position 90 degrees because of some environmental concerns" Video 7:50-8:18 Referring to G.J. Smith, Inc. Lease
8/26/13	Planning Board approval of Minor Modification to Airport MCD "The property is within the Commercial Industrial (CI) district and the use requested above, is now allowed by right and is appropriate for the areaBylaw section 139.23 and finds that the use is compatible with the overall intent of the original MCD, is consistent with future anticipated uses and is laid out in a reasonable and functional manner."
9/18/13	Lease with new reconfigured lot layout *** (This date could be earlier, this is only date I could find that is associated with the new lease)
9/24/13	DD: "G.J. Smith, Inc. a lease for landscape operations and a storage facility" Video 9:20-9:30
9/24/13	TMR: Deferred acting on the lease because the commission wanted to know if the MCD had been changed to allow storage facilities Video 9:44-10:25
10/15/13	Lease modified to read: "Landscape Business / Storage & Warehouse Facility"
10/22/13	10/22/13 Airport Commission meeting minutes: "An unexploded ordinance was found in the Bunker area. The State Police responded and detonated. A clause needs to be added to the Bunker Leases as well as notification to current tenants to address any future issues."

.

11/26/13	DD: Discusses the changes to the lease willing to hear Mr. Smith
	before submitting lease agreement to attorneys. DD asks RA to
	discuss the use of the leased land says quite different
	from their initial understanding and RFP

11/26/13RA: "It simply is a self-storage facility" Video 23:10-23:13RA: Discusses 5 proposed lease modifications

- 11/26/13 Arthur Gasbarro: Indicates that he is not opposed to the self-storage facility but wants to ensure all the permitting is done correctly. "That the permitting would best be done prior to the execution of the lease" Video 28:35-31:05 "Is this a use of land that we want to encourage... associated traffic" Video 31:05-34:25
- 11/26/13 GJS "The proposed use of the land was an issue months ago one that I was a little worried about we went to the plan board earlier... the property is within the commercial industrial district and the use requested above is now allowed by right and is appropriate for the area" Video 33:38-37:07
- 11/26/13 DD: "This really is a different use than we understood to be the original use and it's a more intensive use if it fits within the rules of the planning board and zoning I don't see it as our business to say whether or not this is a particular business which should be run on our property.....the intensity of use on the roadway and so forth when I am out there, there is never anybody out there so that doesn't worry me a whole lot... my suggestion would be that the next step is we talk to counsel about this... what is acceptable and what isn't acceptable of the suggested changes to the lease and get back to you on that" Video 38:15-42:10
- 11/28/13 Airport deposited check from G.J. Smith, Inc. written for \$3000
- 12/3/13 HDC approved 4 buildings for newly reconfigured lease lot (2nd time through HDC)
- 12/17/13 RA: "Since our meeting several weeks ago we have not heard anything from the Commission as to how we are to proceed. We have scheduled a Soils Test for Weds., and are proceeding with our due diligence with the City to obtain a building permit to move forward with this project. Please let me know how to proceed with the Commission, as we are anxious to do all that is necessary to finalize our agreement."

12/20/13 GJS: Dig 9 foot test holes with Nantucket Surveyors on Lease Parcel No. 9 for study to determine soil structure

1/6/14 JT: "We have not received any comments back from Town Counsel as of today..."

1/14/141/14/14 Airport Commission Meeting Minutes: <u>"Mr. Rafter noted the
GJ Smith Bunker Parcel Lease is still pending as Legal Counsel
has not yet provided their comments on the proposed revisions.</u>
Additionally, Mr.

Rafter added, there is an open question as to the use of the lot proposed in the response to the RFP vs. the use of the lot in the draft Lease indicating the change of use may not be allowable per the Procurement Laws.

Mr. Drake suggested reviewing the 1/14/14 email from Rod Allred of Turn Key Storage, an associate of GJ Smith Inc. to keep the process moving forward while waiting for Legal Counsel's comments."

TR: "Still awaiting comments on the lease. We sent to legal, I was told I should have them by tomorrow" Video 43:08-44:16

1/14/14 DD: "Lease needs to be signed by March 1, 2014 at the latest" Video 55:15-56:10

Further discussion on 5 requested lease modifications

- 1/14/14 Airport Commission meeting minutes: "Required environmental inspection prior to Lease signing be at the at landlords expense. Mr. Rafter noted the study was completed by the Airport already and will provide a copy."
- 1/14/14RA: Asks for their attorneys contact information then indicates
that GJ Smith is prepared to sign the agreement on March 1, 2014
Video 1:11:45-1:12:25
- 1/27/14 JT: "I cannot attach the Phase 1 Site Assessment(s) we had performed on the site. There are two because the original lots were orientated differently. The two assessments cover the site as it is orientated now."

- 1/27/14 JT: "I apologize our attorney had not yet contacted your attorney. We did go over the changes with him last week and are expecting another draft. Perhaps that has been the delay."
- 1/27/14JT: "Confirming that we have not heard anything from your legal
counsel. Tom and Commission members we are anxious as we are to
finalize the lease and allow us to move forward with construction."
- 1/28/14 RA: "Please help me understand the Commission procedures for these easements soon, as we expect to apply for this utility immediately." No response to this e mail

1/28/14 RA; "I am anxious to meet with your legal counsel on the lease; if this option is available and will move forward the finalization of our lease, please let me know."

1/28/14 TMR "Back in October there was a piece of ordinance found in a dirt pile... what we discovered is the airport is a formerly used defense site....its about a 2 acre piece out in the bunker area..... Further discussions with the Army Corps this Thursday in that regard to move forward and develop a plan as to how to address the site, the issues and what recommendations in terms of how to operate in that environment."

"In a study from 2008.... The entire airport is a FUD site and there are 3 areas of concern and in one of the area of concerns out on the bunker road parcels, there's about a 2 acre section that may contain some of these materials and could possibly be a burial site from when the military was here."

Video 1:18:00-1:21:15

a) - 1 - 1

<u>1/28/14</u> TMR "We don't want it (GJ Smith Lease) to just die we are running it parallel... don't execute until we get it under control" Video 1:25:27-1:27:14

1/28/14 Airport meeting minutes: "A conference call with the Army Corp of Engineers resulted in a recommendation the Airport hire a Licensed Site Professional (LSP) to expedite the process. Discussions have taken place in developing a scope of work for the LSP.

Mr. Rafter reported a 2008 study was discovered which indicated three areas of focus within the Airport site. One of those areas, the only one of concern, is approximately two (2) acres in the Bunker area which may contain buried ordnance materials. A more in depth investigation is needed as the next step to determining a remediation plan. Mr. Rafter added the Phase I assessments performed in the Bunker area prior to granting new Leases mentioned the record of FUDS site but noted they had been cleared by the Army Corp of Engineers. Mr. Rafter added this may not be an accurate statement. Mr. Rafter added until the 2008 Report was found on-line within the last ten days, no-one at the Airport was aware of this issue.

Mr. Rafter explained the tenants affected will be notified and an LSP will be engaged. Their findings will determine what the next steps will be. <u>Mr. Drake added negotiations</u> <u>can proceed with the GJ Smith Lease, but the Commission will have to hold off</u> <u>signing until this issue is resolved.</u>"

1/29/14 TMR: "We write to inform you of the recent discovery of what appears to have been a single, WWII era unexploded ordinance on land located on Bunker Road at the Nantucket Memorial Airport....According to information from the U.S. Army Corps of Engineers, there is a "low to moderate risk" that unexploded ordinances may exist in the area."

1/29/14 TMR: "The Airport also intends to retain a Licensed Site Professional to determine whether, as a result of the discovery, additional environmental assessments of potentially affected areas are necessary. As a result of these circumstances, the Airport is not in a position, at this time, to sign a lease with your firm for the specified parcel. However, rather than terminate the procurement at this time, the Airport would like to postpone further actions on the lease upon completion of the undertaking referenced above, at which time, the Airport may, in its discretion and to the extent permitted by law, restart negotiations with your firm on a proposed lease for the project."

1/30/14 RA: "Thanks for the information on the ordinance found near our lease site. We understand your obvious concerns and the need to be sure we don't have additional pieces prior to our moving forward with construction."

2/4/14 TMR: "In following up to our January 29, 2014, notice of the discovery of unexploded ordinance at the Airport, <u>I enclose a portion of the U.S. Army Corp of</u> <u>Engineers' Final Site Inspection Report for the Nantucket Memorial Airport, a</u> <u>copy of which was only recently obtained by the Airport following the discovery</u> <u>of the unexploded ordinance."</u>

Referring to: <u>Site Inspection Report for the Nantucket Memorial Airport</u> Dated January 2008

2/10/14 RA: "Just following up to see if we are scheduled for a "clean bill" to proceed on Lease #9. As I indicated, we would be happy to clear the site without the use of excavation equipment in preparation for a "sweep". Anxious to help in any way we might, please advise."

2/13/14 GJS Attorney: "...requests that the Airport permit GJS to engage a thirdparty environmental consultant to conduct environmental testing on the Premises to determine the environmental condition of the Premises and whether the Premises is also impacted by the existence of any unexploded ordnance."

2/17/14 **RA: "Please concede contacting Tom and your legal immediately** and see if I it would work for me to meet ASAP in their office if that would facilitate a quicker finalization of our lease. Please advise, we are anxious to see this completed.

2/18/14 RA to Weston Solutions, Inc.: "It is my understanding that your firm is capable of performing a "Site" specific test for us as to the existence of additional unexploded ordinance as well as any environmental concerns."

2/19/14 CGK: "Weston Solutions, Inc. has evaluated the proposed scope for munitions/environmental assessment services and feels that there is a conflict of interest on this opportunity as Nantucket Memorial Airport is a client of ours."

4/4/14 RA: Letter on record 3/25/14 Airport Commission Meeting "It should be noted that no mention of this ordinance was issued to GJ Smith in either the meetings they attended in November of 2013 or January of 2014."

4/4/14 RA: "...are the email addresses of the Commissioners available to the public for follow up — If so might you share them with me —" No response to request

4/7/14 JT: "We have not yet received any testing results from Weston."

4/8/14 TMR: <u>"Given the above facts and specifically because your current</u> proposed use of this parcel is not nearly consistent with the proposal received, I would strongly recommend that the Airport Commission cancel this procurement and terminate and [sic] dealing with your company immediately."

Monthly Statistical Report

(March 2014)

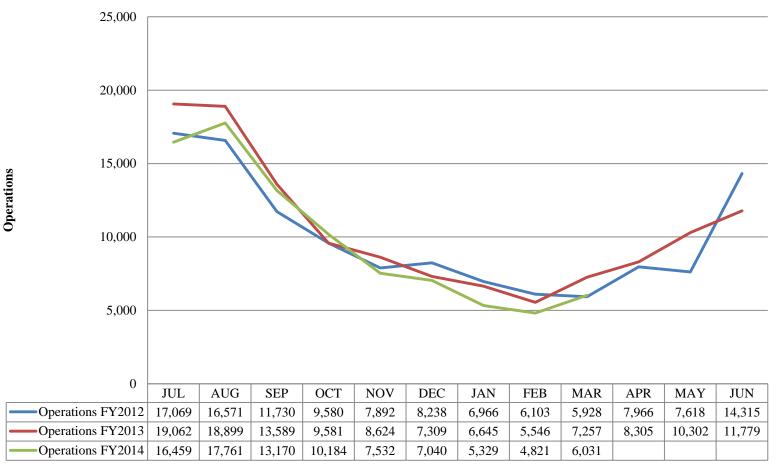
Operations FY2012 vs. FY2013

		1000														
_				JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	TOTAL
FY2012			Air Carrier	158	147	107	16	0	0	0	0	0	0	2	143	573
	NT		Air Taxi	11,478	10,848	8,113	6,781	6,041	6,249	5,646	4,968	4,573	6,133	5,498	9,820	86,148
	ITINERANT		General Aviation	5,408	5,515	3,444	2,540	1,799	1,907	1,252	1,116	1,251	1,746	1,929	4,140	32,047
		L L		Military	23	36	66	243	44	74	66	15	59	27	25	82
		TOTAL	Intinerant	17,067	16,546	11,730	9,580	7,884	8,230	6,964	6,099	5,908	7,906	7,452	14,185	119,551
			Civil	0	21	0	0	8	4	2	4	20	60	69	94	282
	LOCAL		Military	2	4	0	0	0	4	0	0	0	0	14	36	60
	Ľ	TOTAL	Local	2	25	0	0	8	8	2	4	20	60	83	130	342
		TOTAL	Operations	17,069	16,571	11,730	9,580	7,892	8,238	6,966	6,103	5,928	7,966	7,618	14,315	119,976

Up 5.77%

				JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	TOTAL
Fy2013			Air Carrier	182	190	93	32	0	0	0	0	9	0	76	150	732
	Ę		Air Taxi	12,413	12,315	9,388	7,022	6,382	5,864	5,355	4,419	5,604	6,368	7,532	8,226	90,888
	RAI		General Aviation	6,370	6,249	3,917	2,360	2,104	1,393	1,188	1,038	1,565	1,859	2,619	3,290	33,952
	ITINERANT		Military	75	99	161	128	136	50	96	73	69	78	75	105	1,145
	E															
-		TOTAL	Intinerant	19,040	18,853	13,559	9,542	8,622	7,307	6,639	5,530	7,247	8,305	10,302	11,771	126,717
	۲		Civil	18	55	22	6	2	2	0	16	10	0	0	8	139
	LOCAL		Military	4	0	8	33	0	0	6	0	0	0	0	0	51
	Ľ	TOTAL	Local	22	46	30	39	2	2	0	16	10	0	0	8	175
		TOTAL	Operations	19,062	18,899	13,589	9,581	8,624	7,309	6,645	5,546	7,257	8,305	10,302	11,779	126,898
			% Change	11.68%	14.05%	15.85%	0.01%	9.28%	-11.28%	۔ 4.61%	-9.13%	22.42%	4.26%	35.23%	-17.72%	5.77%

Operations FY2013 vs. FY2014


				JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	TOTAL
Fy2014			Air Carrier	199	201	115	52	0	0	0	0	0				567
	L		Air Taxi	11,154	11,707	9,099	7,487	5,677	5,239	4,174	3,655	4,694				62,886
	ITINERANT		General Aviation	4,980	5,790	3,809	2,481	1,755	1,759	1,111	1,066	1,307				24,058
	Ē		Military	104	39	129	134	68	24	44	91	22				655
		TOTAL	Intinerant	16,437	17,737	13,152	10,154	7,500	7,022	5,329	4,812	6,023				88,166
	_		Civil	22	18	16	30	28	18	0	9	8				149
	LOCAL		Military	0	6	2	0	4	0	0	0	0				12
		TOTAL	Local	22	24	18	30	32	18	0	9	8				161
		TOTAL	Operations	16,459	17,761	13,170	10,184	7,532	7,040	5,329	4,821	6,031				88,327
			% Change	-13.66%	-6.02%	-3.08%	6.29%	-12.66%	-3.68%	-19.80%	-13.07%	-16.89%				

Mar 2013 vs. Mar 2014 Down -16.89% YTD Down -8.48%

YTD	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	TOTAL	% Change
Operations FY2012	17,069	16,571	11,730	9,580	7,892	8,238	6,966	6,103	5928	90,077	,
Operations FY2013	19,062	18,899	13,589	9,581	8,624	7,309		·	7257	96,512	7.14%
Operations FY2014	16,459	·		,		·		·		,	

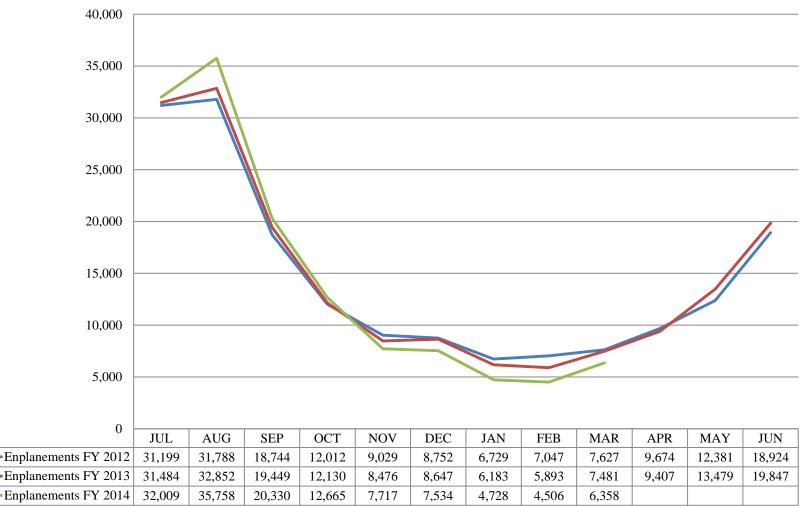
Operations FY2012- FY2014

Passenger Enplanements FY2012 vs. FY2013

Y2012	AIRLINE	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	TOTAL
	Cape Air <i>(KAP</i>)	8,251	8,638	5,981	3,843	1,962	1,824	1,229	1,176	1,289	1,900	3,368	4,391	43,852
	Colgan <i>(USAirways - CJC)</i>	1,505	1,852	273	Closed	3,630								
	Piedmont/United	Closed	1,050	1,050										
	Continental Connection (Comut													
	air)	2,259	2,341	142	Closed	4,742								
	Delta Express <i>(Freedom Air)</i>	Closed	0											
	Delta Airlines/ComAir	1,720	1,758	286	Closed	1,176	4,940							
	Island Air <i>(ISA)</i>	5,713	7,742	6,368	5,852	5,034	5,052	3,787	3,910	4,160	5,332	4,904	5,450	63,304
	JetBlue Airways	4,783	4,807	2,966	Closed	1,447	3,746	17,749						
	Nantucket Air <i>(ACK)</i>	2,276	2,256	2,041	2,147	1,957	1,822	1,713	1,954	2,165	2,397	2,470	2,734	25,932
	Nantucket Shuttle	2,337	Closed	2,337										
	Tradewind Aviation	618	642	361	170	76	54	0	7	13	45	192	0	2,178
	USAirways (Air Wisconsin -													
	AWI)	1,737	1,752	326	Closed	377	4,192							
	Monthly Total	31,199	31,788	18,744	12,012	9,029	8,752	6,729	7,047	7,627	9,674	12,381	18,924	173,906

							Up	. 82%	6					
		CY 2012						CY 2013						
FY2013	AIRLINE	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	TOTAL
	Cape Air <i>(KAP)</i>	7,722	7,977	6,815	3,526	1,916	1,883	1,112	2 1,106	1,307	2,019	3,470) 3,929	42,782
	Piedmont/United	3,241	2,946	0	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	1,714	7,901
	Continental Connection (Comut air)	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	0
	Delta Express (Freedom Air)	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	0
	Delta Airlines	1,816	2,008	0	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	1,135	4,959
	Island Air <i>(ISA)</i>	6,792	6,696	5,772	4,748	4,387	4,621	3,359	3,249	4,176	5,038	5,677	7 5,480	59,995
	JetBlue Airways	6,420	7,473	3,825	1,083	Closed	Closed	Closed	Closed	Closed	Closed	1,774	4,591	25,166
	Nantucket Air (ACK)	2,892	2,966	2,621	2,249	2,085	2,080	1,699	9 1,537	1,990	2,282	2,265	5 2,236	26,902
	Tradewind Aviation	750	716	408	524	88	63	13	3 1	8	68	3 293	3 311	3,243
	USAirways <i>(Air Wisconsin - AWI)</i>	1,851	2,070	8	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	451	4,380
	Monthly Total	31,484	32,852	19,449	12,130	8,476	8,647	6,183	5,893	7,481	9,407	13,479	19,847	175,328
	% Change Prior Year	0.91%	3.35%	3.76%	0.98%	-6.12%	-1.20%	-8.11%	-16.38%	-1.91%	-2.76%	8.87%	4.88%	0.82%

Passenger Enplanements FY2012 vs. FY2013


		CY 2013						CY 2014						
FY2014	AIRLINE	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	TOTAL
	Cape Air <i>(KAP)</i>	7,158	8,526	6,411	3,739	1,685	1,930	989	947	1,201				32,586
	Piedmont/United	3,005	3,033	0	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed		6,038
	Continental Connection (Comut air)	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	0
	Delta Express (Freedom Air)	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	0
	Delta Airlines	2,720	3,238	910	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed		6,868
	Island Air <i>(ISA)</i>	6,277	6,558	5,727	4,932	4,140	3,942	1,346	2,207	3,150				38,279
	JetBlue Airways	7,536	8,406	4,520	1,505	Closed	Closed	Closed	Closed	Closed	Closed			21,967
	Nantucket Air (ACK)	2,402	2,812	2,243	2,339	1,787	1,541	2,384	1,340	1,999				18,847
	Tradewind Aviation	905	957	326	150	105	121	9	12	8				2,593
	USAirways <i>(Air Wisconsin - AWI)</i>	2,006	2,228	193	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed		4,427
	Monthly Total	32,009	35,758	20,330	12,665	7,717	7,534	4,728	4,506	6,358	(o o	131,605
	% Change Prior Year	1.67%	8.85%	4.53%	4.41%	-8.95%	-12.87%	-23.53%	-23.54%	-15.01%				

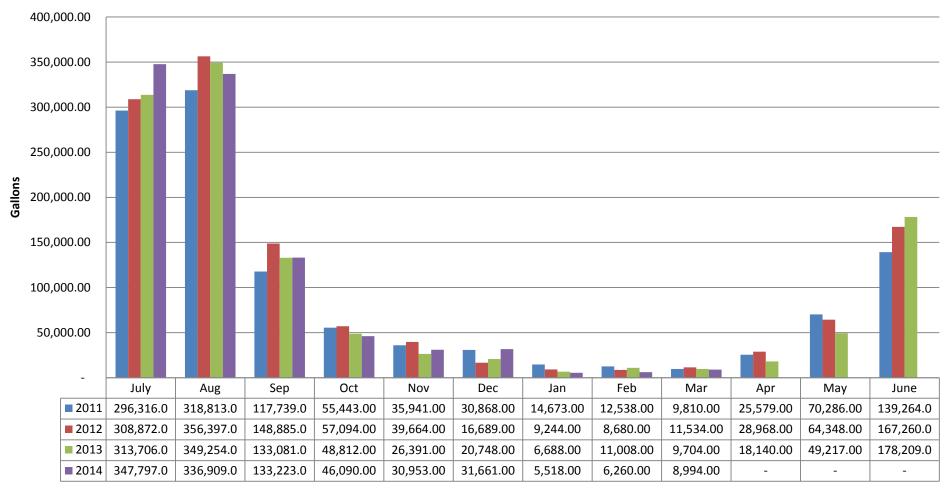
Feb vs. Feb Down - 15. 01% YTD Up - 0. 75%

	JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	TOTAL	% Change
Enplanements FY 2012	31,199	31,788	18,744	12,012	9,029	8,752	6,729	7047	7627	132,927	,
Enplanements FY 2013	31,484	32,852	19,449	12,130	8,476	8,647	6,183	5893	7481	132,595	-0.25%
Enplanements FY 2014	32,009	35,758	20,330	12,665	7,717	7,534	4,728	4,506	6,358	131,605	-0.75%

Passenger Enplanements FY2012 - FY 2014

Jet A Gallons Sold FY2011 vs. FY2014

	July	Aug	Sep	Oct	Nov	<u>Dec</u>	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	May	June	<u>Total</u>	% Change
FY 2011	296,316.00	318,813.00	117,739.00	55,443.00	35,941.00	30,868.00	14,673.00	12,538.00	9,810.00	25,579.00	70,286.00	139,264.00	1,127,270.00	
FY 2012	308,872.00	356,397.00	148,885.00	57,094.00	39,664.00	16,689.00	9,244.00	8,680.00	11,534.00	28,968.00	64,348.00	167,260.00	1,217,635.00	8.02%
FY 2013	313,706.00	349,254.00	133,081.00	48,812.00	26,391.00	20,748.00	6,688.00	11,008.00	9,704.00	18,140.00	49,217.00	178,209.00	1,164,958.00	-4.33%
FY 2014	347,797.00	336,909.00	133,223.00	46,090.00	30,953.00	31,661.00	5,518.00	6,260.00	8,994.00	-	-	-	947,405.00	


Mar vs. Mar Down - <mark>7.0%</mark> YTD Up 3.05%

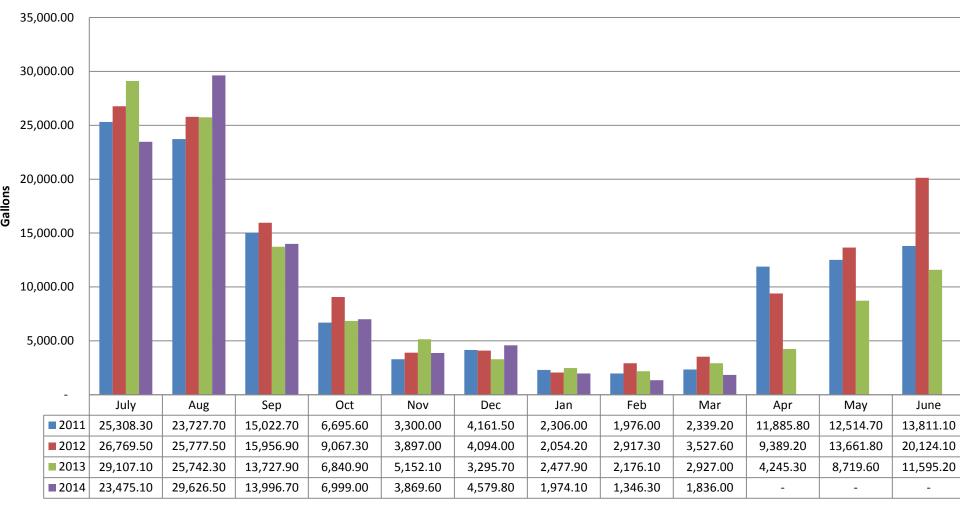
	July	Aug	<u>Sep</u>	<u>Oct</u>	Nov	Dec	Jan	<u>Feb</u>	Mar	<u>Total</u>	<u>% Change</u>
FY 2011 Jet A	296,316.00	318,813.00	117,739.00	55,443.00	35,941.00	30,868.00	14,673.00	12,538.00	9,810.00	892,141.00	
FY 2012 Jet A	308,872.00	356,397.00	148,885.00	57,094.00	39,664.00	16,689.00	9,244.00	8,680.00	11,534.00	957,059.00	7.28%
FY 2013 Jet A	313,706.00	349,254.00	133,081.00	48,812.00	26,391.00	20,748.00	6,688.00	11,008.00	9,704.00	919,392.00	-3.94%
FY 2014 Jet A	347,797.00	336,909.00	133,223.00	46,090.00	30,953.00	31,661.00	5,518.00	6,260.00	8,994.00	947,405.00	3.05%

Monthly Jet A Gallons Sold

Per Fiscal Year

AvGas Gallons Sold FY2011 vs. FY2014

	July	Aug	<u>Sep</u>	<u>Oct</u>	Nov	Dec	<u>Jan</u>	<u>Feb</u>	Mar	<u>Apr</u>	May	<u>June</u>	<u>Total</u>	% Change
FY 2011	25,308.30	23,727.70	15,022.70	6,695.60	3,300.00	4,161.50	2,306.00	1,976.00	2,339.20	11,885.80	12 514 70	13,811.10	123,048.60	
112011	23,308.30	23,727.70	13,022.70	0,093.00	3,300.00	4,101.30	2,300.00	1,970.00	2,339.20	11,885.80	12,514.70	15,811.10	123,048.00	
FY 2012	26,769.50	25,777.50	15,956.90	9,067.30	3,897.00	4,094.00	2,054.20	2,917.30	3,527.60	9,389.20	13,661.80	20,124.10	137,236.40	12%
	20.407.40	25 742 22	40 707 00	6 0 40 00	- 4-2 40	2 205 70		2.476.40	2 0 2 7 0 0	4 9 45 9 9	0 710 00	44 505 00		4 5 0 (
<u>FY 2013</u>	29,107.10	25,742.30	13,727.90	6,840.90	5,152.10	3,295.70	2,477.90	2,176.10	2,927.00	4,245.30	8,719.60	11,595.20	116,007.10	-15%
	22.475.40	20 626 50	42,006,70	c 000 00		4 5 7 0 0 0		4.246.00	1 000 00				07 702 00	
<u>FY 2014</u>	23,475.10	29,626.50	13,996.70	6,999.00	3,869.60	4,579.80	1,974.10	1,346.00	1,836.00	-	-	-	87,702.80	

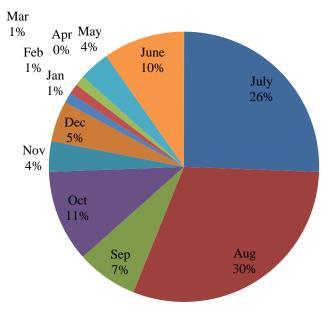

Mar vs. Mar Down - 37% YTD Down - 4.09%

	July	Aug	Sep	<u>Oct</u>	Nov	<u>Dec</u>	<u>Jan</u>	<u>Feb</u>	Mar	<u>YTD Total</u>	<u>% Change</u>
2011 AvGas	25,308.30	23,727.70	15,022.70	6,695.60	3,300.00	4,161.50	2,306.00	1,976.00	2,339.20	84,837.00	
2012 AvGas	26,769.50	25,777.50	15,956.90	9,067.30	3,897.00	4,094.00	2,054.20	2,917.30	3,527.60	94,061.30	10.87%
2013 AvGas	29,107.10	25,742.30	13,727.90	6,840.90	5,152.10	3,295.70	2,477.90	2,176.10	2,927.00	91,447.00	-2.78%
2014 AvGas	23,475.10	29,626.50	13,996.70	6,999.00	3,869.60	4,579.80	1,974.10	1,346.30	1,836.00	87,703.10	-4.09%

Monthly 100LL Gallons Sold

Per Fiscal Year

Noise Calls FY2011 vs. FY2014


														%
_	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	Total	Change
FY 2011 Calls	21	25	6	q	з	4	1	1	1	0	3	8	82	
											10			
FY 2012 Calls FY 2013 Calls	23		13	1	2	4	0	4	1	11	16			
	96		0	5	4	2	2	4	2	11	25	25		
FY 2014 Calls	28	12	8	2	4	0	1	0	1				56	

Mar	vs.	Mar	Down	- 50%
Y	TD D	own	- 56. 2	5%

	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	Total	% Change
FY 2011 Calls	21	25	6	9	3	4	1	1	1				71	
FY 2012 Calls	23				2	1			1				82	
FY 2013 Calls	96						0		<u>_</u>				128	
FY 2014 Calls	28		0		4		2		1	•			56	

FY 2011 - FY 2014 Noise Calls

